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SUMMARY 

The purpose of the work presented has been the development of an explanatory variable that characterizes 
train handling effects, allowing for the identification of changes in locomotive fuel consumption over a given 
territory (for example in response to Top of Rail Friction Modifier (TORFM) application) with improved 
confidence.  To generate the explanatory variable, the concept of Inertial Tractive Effort (ITE) was 
developed.  Given the total instantaneous tractive effort (TE) dispatched by a locomotive consist to 
overcome all sources of resistance, ITE is an estimate of the portion spent overcoming inertial resistance to 
generate acceleration.   

Integrating ITE over time yields cumulative ITE (cITE), which is in essence an estimate of total energy spent 
on acceleration versus a train travelling at constant speed over the same territory.  Analysis of data collected 
in revenue service on several Union Pacific coal routes has shown that cITE acts as an explanatory variable, 
effectively mitigating variability in the data and allowing for an improved confidence when analyzing the 
impacts of other variables such as TORFM application.  With the incorporation of cITE as an explanatory 
variable in a multi-variable regression of locomotive fuel data collected over five months of revenue service 
operation on Union Pacific, the statistical power of the underlying model was improved to yield a P-value of 
0.028 versus 0.202 otherwise (the corresponding fuel savings associated with TORFM application were 
estimated at 6.4%). The approach represents a novel and useful mechanism to handle fuel data variability, 
with the potential to underpin a broad range of analyses. 

 

INTRODUCTION 

Locomotive fuel consumption represents a 
substantial operating cost in North American 
Heavy Haul [1-7].  This motivates the exploration 
and implementation of technologies with the 
capacity to generate verifiable fuel savings, with 
one such technology being train mounted 
application of Top of Rail Friction Modifier 
(TORFM) [2-10]. 
 
Analysis of locomotive fuel savings with statistical 
confidence is made challenging by substantial 

variability in the data.  Among numerous sources 
of variability, train handling has generally been 
observed as a major contributing factor [4].  
Operator behaviour including acceleration / 
deceleration and corresponding time-in-notch 
patterns can produce variations in fuel 
consumption over the same territory that 
overwhelm the differences generated by (for 
example) TORFM application.   
 
The purpose of the work presented has been the 
development of an explanatory variable that 
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characterizes train handling effects, allowing for 
the analysis of TORFM impacts with improved 
confidence.  To generate this explanatory variable, 
the concept of Inertial Tractive Effort (ITE) was 
developed.  Given the total instantaneous tractive 
effort (TE) dispatched by a locomotive consist to 
overcome all sources of resistance, ITE is an 
estimate of the portion spent overcoming inertial 
resistance to generate acceleration.   
 
Estimating instantaneous ITE is non-trivial, 
requiring algorithmic analysis of relatively large 
volumes of heterogeneous locomotive event 
recorder data sets.  By integrating ITE over the 
duration of a given run, Cumulative Inertial 
Tractive Effort (cITE) can be calculated.  This 
cumulative value represents an estimate of net 
energy spent through locomotive tractive effort in 
acceleration/deceleration.  It is important to note 
that calculation of ITE and cITE ignores 
regenerative work (i.e. work done by the 
environment on the system while the locomotive is 
not dispatching  tractive effort), and as such yields 
a different result than would be obtained through a 
simple force balance and integration of mechanical 
work over the entire run.  Aspects of train handling 
(e.g. excess energy spent through extraneous 
acceleration/deceleration) are then reflected in the 
magnitude of cITE for a given run. 
 

NOTATION 

Fi Locomotive fuel consumed 
βj Linear regression coefficient 
xij Explanatory variable in linear regression 
εi Unobserved random variable 
m Lumped estimate of train mass 
v(t) Lumped estimate of train speed 
a(t) Lumped estimate of train acceleration 
α Low-pass filter parameter 
s(t) Speed as measured by event recorder 
k Discrete sampling instant 
Rtangent Rolling resistance in tangent track 
Rcurves  Resistance due to curves 
Rgrade  Resistance due to grade 
Rwind  Resistance due to wind 
TE Tractive Effort 
ITE Inertial Tractive Effort 
cITE Cumulative Inertial Tractive Effort 
 

LOCOMOTIVE FUEL DATA AND VARIABILITY 

As mentioned above, locomotive fuel data (i.e. fuel 
consumed by nominally similar trains over a given 
territory) is notoriously variable due to a range of 

factors including the train itself, environmental 
inputs and operator behaviour (i.e. train handling). 
 
Given the introduction of an intentional change in 
operating conditions (e.g. the application of 
TORFM), it is consequently challenging to obtain a 
statistically significant measure of resulting 
changes in fuel consumption.   
One common approach to managing variability is 
the use of multi-variable regression.  For example, 
a linear model of the form shown in equation (1) 
might be constructed. 
 

(1) iinniii xxxF εβββ ++++= ...2211  

Here Fi are the fuel measurements (measured 
variable), x1, x2, …, xn are the explanatory 
variables, β1, β2, … βn, are the coefficients of the 
explanatory variable (to be solved for) and εi is an 
“unobserved” random variable that adds noise 
(uncertainty) to the measured values (Fi).  The 
explanatory variables would include all measured 
variables that are believed to have an impact or 
potential impact on fuel consumption, including the 
change that is being evaluated. 

Explanatory variables can be continuous (e.g. train 
length, temperature, …), discrete (on/off) or 
constant.  As an example, when evaluating Top of 
Rail Friction Modifier (TORFM) application, a 
discrete explanatory variable xTOR might be 
introduced, and assigned a value of xTOR=0 under 
baseline conditions and xTOR=1 when TOR FM is 
applied.  Typically a constant explanatory variable 
(xc=1) is also included to allow for a non-zero 
intercept (βc) in the model. 

When the model is solved (e.g. using multivariable 
linear regression), the result will be the series of 
coefficients β1, β2, … βn that indicate the degree to 
which each explanatory variable affects fuel 
consumption, as well as residual variation 
(represented above as εi).  The strength of 
correlation between explanatory variables and the 
measured variable can also be reported.  Referring 
to the example explanatory variable xTOR, the 
corresponding coefficient βTOR would represent the 
change in fuel consumption due to TORFM 
application. 

Due to the large inherent variability in locomotive 
fuel consumption, the residual variation following 
this type of regression tends to be quite large and 
it is difficult to measure the effects of a given 
change with statistical confidence.  Normally a p-
value is reported to indicate the statistical power of 
the model in explaining fuel consumption, with p < 
0.05 used as a threshold for statistical significance.  
Statistical power also tends to improve with the 
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number of measurements collected, i.e. the large 
variability in fuel consumption is often handled by 
taking large numbers of sample measurements. 

In the work described here, a linear model was 
constructed (initially in the absence of cumulative 
Inertial Tractive Effort as a factor) using the 
explanatory variables listed and described in Table 
1. 

 

Factor 
(Explanatory 
Variable) 

Description 

TOR status TORFM On, Following, 
None, or Unknown. 

TOR follow distance If following a TOR train, 
number of trains behind 
TOR On train. 

Month-Year Accounts for seasonality 
(month within year) and 
overall trend (year-to-year) 

Month-Year *  

TOR status 

Effect of TOR on average 
litres by month and year 

Grade score sum Grade score for a run. 
Effect of more "ups and 
downs" on average litres 
used 

Departing loco count Accounts for more average 
litres used if more 
locomotives running 

Total tonnes Accounts for more average 
litres used if tonnage 
higher 

Total tonnes *  

TOR status 

Effect of TOR status on 
average litres used may 
vary by tonnes 

Employee effect Estimates different 
average litres used for 
each employee 

Run CRC7 effect Estimates different 
average litres used for 
each run (crc7 pair) 

TOR status by 
Employee and Run 

Effect of TOR on average 
litres used is employee- 
and run-specific 

Total tonnes by 
Employee and Run 

Effect of tonnes on 
average litres used is 
employee- and run-specific 

Table 1: Explanatory variables used in a linear 
model for locomotive fuel consumption, not 
including cumulative Inertial Tractive Effort. 

 

When using this approach, the detection of 
statistically meaningful changes in fuel 
consumption (i.e. a p-value <0.05) with the 
application of TORFM was challenging, despite the 
collection of a relatively large data set.  The 
specific results of the regression are reported in 
the “Results” section below. 
 

EXPLANATORY VARIABLE DEVELOPMENT 

In order to improve the ability to detect meaningful 
changes in the presence of significant variability, 
cumulative Inertial Tractive Effort (cITE) was 
developed as an additional explanatory variable.   
 
Figure 1 provides a conceptual illustration of ITE.  
Referring to the upper portion of the figure 
consider a train moving at constant speed, v, 
through a given territory.  Employing a highly 
simplified model of the train as a lumped mass, m, 
the force corresponding to tractive effort (FTE) 
required to maintain the constant forward velocity 
will be a function of the total train resistance 
comprising terms due to rolling resistance (Rtangent), 
curving resistance (Rcurves), grade resistance 
(Rgrade) and wind resistance (Rwind). 
 

 

Figure 1: Conceptual Illustration of Inertial 
Tractive Effort (ITE). 

 
Looking now at the lower portion of Figure 1, if the 
same train (at the same location, traveling at the 
same instantaneous velocity, v) were in addition to 
undergo an acceleration a(t), the required overall 
tractive effort (FTE) would include an incremental 
“inertial” tractive effort required to generate the 
acceleration.  This would correspond to the inertial 
force FITE, and would be approximately equal to 
the train mass multiplied by the acceleration. 
 
As long as throttle is being applied (FTE>0), the 
corresponding ITE would result in an incremental 
usage of locomotive fuel.  If there is no throttle 
being applied (and in the absence of regenerative 
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behaviour), instantaneous acceleration would not 
have an impact on instantaneous fuel usage. 
 
From a conceptual standpoint, Inertial Tractive 
Effort (ITE) is then calculated as: 

(2) ITE(t)≈ m*a(t) (when TE(t) > 0) 
(3) ITE(t) ≈ 0 (otherwise) 

   
Treating the product of ITE(t) and v(t) as inertial 
tractive power, cumulative ITE is then given as: 
 

(4) cITE = ∫ ITE(t)*v(t)dt 
 

MEASUREMENT AND CALCULATION 

In practical terms, cITE must be calculated based 
on discrete-value, discrete-time locomotive event 
recorder data (typically sampled in 1 second 
intervals).  Prior to calculating the value of cITE for 
a given run, locomotive event recorder data must 
be obtained for the given track segment, and on 
occasion converted to a standard format 
(locomotive event recorder data formats are, in 
general, heterogeneous). 
 
Once locomotive event recorder data is obtained 
runs are calculated between crew change points 
with start / end speeds of zero.  If one or both of 
the start / end speeds are not zero, the run is not 
comparable and is discarded from the data set.  
 
Because of the discrete-value, discrete-time nature 
of the raw locomotive event recorder speed data, 
direct calculation of acceleration values can 
produce erratic results.  As such, event recorder 
speed data s(t) is smoothed and used to calculate 
speed v(t) and acceleration a(t) of the (simplified) 
train at each 1-second sampling interval.  This is 
done using the following discrete- time filters, with 
the filter parameter α chosen to reject noise from 
the discretized data while producing a stable result 
in the calculated value of cITE. 
 

(5) vk = αsk + (1-α)vk-1 
(6) ak = α(sk-sk-1) + (1-α)ak-1 

 
For each 1-second (post-filtered) interval of event 
recorder data, ITE is then calculated as: 

(7) ITEk ≈ m*ak (when TE > 0) 
(8) ITEk ≈ 0 (otherwise) 

 
The condition TE > 0 is enforced by examining 
locomotive notch settings.  ITE is set equal to zero 
when locomotive notch settings correspond to 

Dynamic Brake (DB) activity or Idle, calculated as 
m*ak otherwise. 
 
Given the calculation of ITEk and smoothed 
(filtered) speed vk, the Inertial Tractive Power at 
each sampling interval is then given by ITEk*vk. 
 
The total Inertial Tractive Energy (estimated by the 
value of cITE) over the run can then be found by 
integrating the Inertial Tractive Power.  With 1-
second sampling intervals, cITE is given as: 
 

(9) cITE = ∫ ITE(t)*v(t)dt = ∑ ITEk*vk 
 
The value of cITE for each run can then be stored 
and utilized as an explanatory variable for the 
purposes of regression and identification of the 
impacts of various parameter changes (such as 
the use of TORFM) on locomotive fuel 
consumption. 
 

RESULTS 

As noted above, a preparatory step in the 
calculation of cITE involves the generation of 
filtered values of velocity and acceleration.  The 
relationship between the selected value of the filter 
parameter, α, and the calculated value of cITE for 
a sample collection of train runs obtained from 
revenue service operation on Union Pacific Coal 
Routes is shown in Figure 2.  As shown, selection 
of α=0.2 tends to produce a relatively stable cITE 
value (i.e. relatively insensitive to changes in the 
value of α).  A value of α=0.2 is used in all 
subsequent values reported in this paper. 
 

 

Figure 2: Relationship between the selection of 
α (discrete time filter parameter) and calculated 

value of cITE for a collection of train runs. 
 
The relationship between train handling (in 
particular acceleration / deceleration profiles and 
the calculated value of cITE is shown in Figure 3.  
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The upper plot in the figure shows cITE versus 
elapsed distance for two train runs over the same 
route, with the final value of cITE (occurring at the 
complete elapsed distance) corresponding to the 
single value that would be reported for the run.  
The lower plot shows reported speed versus 
elapsed distance for the same two runs. 
 
As shown, significant acceleration events tend to 
produce a generally persistent increase in the 
value of cITE.  The run indicated by the red trace 
includes significantly more variation in speed 
versus the run indicated in blue (i.e. includes more 
substantial activity in the form of acceleration / 
deceleration events) and results in a larger 
corresponding value of cITE (i.e. larger estimate of 
energy spent on train handling in the form of 
acceleration over the duration of the run). 
 

 

Figure 3: Example plots of speed versus 
distance (lower plot) and cumulative ITE (upper 

plot) for two train runs on the same territory.  
As shown, cumulative ITE increases with 

energy spent in acceleration / deceleration, 
providing an explanatory variable for train 

handling 
 
Table 2 provides a summary of the explanatory 
variables used in a linear model of locomotive fuel 
consumption that includes cITE.  This can be 
compared to the factors listed in Table 1, for the 
linear model that does not include cITE.  As 
shown, in the work presented cITE was 
incorporated in a number of factors, including 
cITE, cITE * TOR status and cITE * Total tonnes.  
This allows for variations in the dependence of 
locomotive fuel consumption on TORFM 
application and trailing tonnage to vary with cITE 
within the overall model. 
 
Both of the models described (i.e. constructed 
using the factors shown in tables 1 and 2) were 
used to carry out multi-variable linear regressions 

on locomotive fuel consumption data collected 
from revenue service traffic on Union Pacific’s 
North American coal route.  Following is a 
description of data collected, and results of the 
regressions. 

Factor 
(Explanatory 
Variable) 

Description 

TOR status TOR On, Following, None, 
or Unknown. 

TOR follow distance If following a TOR train, 
number of trains behind 
TOR On train. 

Month-Year Accounts for seasonality 
(month within year) and 
overall trend (year-to-year) 

Departing loco count Accounts for more average 
litres used if more 
locomotives running 

Total tonnes Accounts for more average 
litres used if tonnage 
higher 

Total tonnes *  

TOR status 

Effect of TOR status on 
average litres used may 
vary by tonnes 

cITE Effect of cITE on average 
litres used 

cITE * TOR status Effect of TOR status on 
average litres used may 
vary by cITE 

cITE * Total tonnes Effect of tonnes on 
average litres used may 
vary by cITE 

Run CRC7 effect Estimates different 
average litres used for 
each run (crc7 pair) 

Total tonnes by Run Effect of tonnes on 
average litres used is 
employee- and run-specific 

Table 2: Explanatory variables used in a linear 
model for locomotive fuel consumption that 
includes cumulative Inertial Tractive Effort 

(cITE). 
 
Locomotive event recorder and fuel usage data 
was collected over a 5 month period from revenue 
service traffic operating on Union Pacific’s coal 
network in Nebraska and Kansas.  Table 3 
provides a summary of route segments from which 
data was collected, as well as the number of train 
runs from each segment for which valid cITE 
values could be generated. 
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Route Segment Segment 
Length 
(km) 

Number 
of Runs 
with 
Valid 
cITE 
Data 

Coff_McAll_Pars 
(Coffeeville,  McAllester 
Parsons) 

253-288 15 

FtWorth_McAlester 
(Fort Worth McAllester) 

269-304 3 

KC_JC 
(Kansas City to Jefferson City) 

246-261 3 

Mary_KC 
(Marysville to Kansas City) 

235-258 7 

NP_Mary 
(North Platte to Marysville) 

400-408 74 

SM_NP 
(South Morrill to North Platte) 

272-282 40 

FtWorth_Hearne_Tay_Halsted 
(Fort Worth, Hearne, Tay, 
Halsted) 

230-238 11 

KC_Coff_Pars 
(Kansas City Coffeeville 
Parsons) 

182-222 4 

Table 3: Union Pacific revenue service coal 
routes, lengths and number of train runs 

collected with valid cITE data. 
 
Traffic consisted of heavy haul (130 tonne gross 
weight) vehicles operating on standard gauge 
(1435mm) North American track, with rail cross 
sections of 67kg/m or heavier (standard an 
premium rail quality), with concrete or wood ties on 
standard North American ballast and sub-ballast 
track structure.   
 
As noted in Tables 1 and 2, the factor denoted 
TOR Status indicates whether or not TORFM was 
applied for each train run, using the system 
described below.   
 
AutoPilot™ Train Mounted Top of Rail Friction 
Control 
Train mounted TORFM was delivered via 
commercial (L.B. Foster AutoPilot) train mounted 
application systems operating on a fleet of UP coal 
cars, mounted in revenue service cars located 
immediately behind the last lead locomotive (for 
the purpose of drawing power and air supplies).  
Figure 4 shows the application equipment 
mounted under the slope plates of the coal car, 

and Figure 5 shows the application nozzle 
applying friction modifier to the top of rail. 
 
Train location, direction, speed, and current track 
segment were determined via GPS, with a PLC 
based control system used to apply KELTRACK 
water based friction modifier at appropriate specific 
application rates (mL/km), depending on route 
segments. The system is self-controlling (requires 
no operator intervention or involvement). Friction 
modifier is applied to both rails over the entire 
route when applying. The system has the 
capability of varying application rate by territory or 
curvature if needed. These systems have been in 
revenue service on Union Pacific for more than 
four years. 
 
System health as well as maintenance planning is 
facilitated by Remote Performance Monitoring of 
the equipment performance [11,12]. 
 

 

Figure 4: AutoPilot TORFM equipment 
mounted on a coal car 

 

 

Fig 5: Friction Modifier Spray Application 
Nozzles 
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Fuel Usage Results 
As noted above, locomotive event recorder data 
was collected over a 5 month period from revenue 
service coal trains operating on Union Pacific’s 
coal network in Nebraska and Kansas (with route 
segments as shown in Table 3).  Event recorder 
file parameters (collected at 1 Hz) included Date, 
Time, Speed, Distance, Tractive Effort and 
Locomotive Notch Setting among others.   
 
Separately, locomotive fuel usage data had been 
calculated and archived by Union Pacific on a per-
segment basis along with information including 
train length, trailing tonnage, etc.  This archive was 
used to generate fuel usage data files 
corresponding to the same segments noted above, 
during the 5 month period of interest.  
 
Post-processing software (writing in the Python 
programming language) was used to match event 
recorder data files with Union Pacific fuel usage 
records based on date and time of departure and 
locomotive identifier.  Data from both files was 
then merged to establish a database of records 
containing information sufficient to calculate and 
apply cITE in the analysis of fuel usage under 
baseline and TORFM conditions. 
 
Before calculating values of ITE and cITE for each 
matched set of records, smoothed values of 
velocity and acceleration were generated using the 
low-pass filter shown in equations (5) and (6) with 
the filter parameter, α=0.2.  Subsequently ITE and 
cITE were calculated as shown in equations (7) 
through (9).  Velocity and acceleration smoothing, 
as well as calculation of ITE and cITE, were also 
carried out using software developed in the Python 
programming language, motivated by its efficiency 
in handling large files containing data represented 
in text (comma separated value) format.  For 
perspective, typical individual locomotive event 
recorder data files for a single route segment were 
60-80MB in size. 
 
Prior to introducing and adopting ITE and cITE in 
the analysis, a multi-variable linear regression had 
been applied using a model implementing the 
explanatory variables (factors) listed in Table 1.  
Referring to Table 4, the results of the regression 
when applied to the 5 month Union Pacific data set 
estimated the impact of TORFM application on 
locomotive fuel usage as -100.0 L/trip, with a p-
value of 0.202 (not statistically significant).  As 
described earlier in the paper, detecting a change 
in fuel usage with statistical confidence was made 
challenging by substantial residual variability with 
the application of this first model.  
 

 
Model Estimated change 

in Fuel usage with 
TORFM application 

L (%) 

P-value 

Initial model 
(see Table 1) 

-100.0 (3.3%) 0.202 

Model 
incorporating 
cITE (see 
Table 2) 

-192.9 (6.4%) 0.028 

Table 4: Estimated changes in fuel usage with 
application of TORFM, and statistical 

confidence (P-value). 
 
Subsequently, a multi-variable linear regression 
was performed using a model implementing the 
explanatory variables listed in Table 2.  In specific, 
the latter model incorporated cITE.  When applying 
the model incorporating cITE to a 1,000 record 
sample data set, the explanatory power was seen 
to improve with R2 increasing from 0.702 to 0.758.  
Referring again to Table 4,  regression of the 
complete data set estimated the impact of top of 
rail friction modifier application on locomotive fuel 
usage as -192.9 L/trip, with a p-value of 0.028.  
This represents a fuel savings of 6.4%, versus 
average values under baseline (non TORFM 
applying) trains.  The latter result can be assessed 
as statistically significant, and demonstrates the 
explanatory power of cITE given a limited data set.   
 

CONCLUSIONS 

Integrating ITE over time yields cumulative ITE 
(cITE), which is in essence an estimate of total 
energy spent on acceleration versus a train 
travelling at constant speed over the same 
territory.  Analysis of data collected in revenue 
service on several Union Pacific coal routes has 
shown that cITE acts as an explanatory variable, 
effectively mitigating variability in the data and 
allowing for an improved confidence when 
analyzing the impacts of other variables such as 
TORFM application.  With the incorporation of 
cITE as an explanatory variable in a multi-variable 
regression of locomotive fuel consumption data 
collected over five months of revenue service 
operation on Union Pacific, the statistical power of 
the underlying model was improved to yield a P-
value of 0.028 versus 0.202 otherwise (the 
corresponding fuel savings associated with 
TORFM application were estimated at 6.4%).The 
approach represents a novel and useful 
mechanism to handle fuel data variability, with the 
potential to underpin a broad range of analyses.   
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