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Foreword

In April 1971, Los Angeles and its satellite cities were treated

to one of its least interesting and least publicized elections in
years. Nothing seemed to be hotly contested. A few Los

Angeles city councilmen were up for reelection as were some
members of the Board of Education and the Board of Trustees

of the Community Colleges.
– Nakanishi, Cooper and Kassarjian [1974]

Our colleague, Professor Harold H. Kassarjian, ran for one of the

seats on the Board of Trustees and received 17,286 votes. While he
lost the election, he had collected the data which he felt characterized
voting in such low-involvement cases. He asked us to join him in writing

a follow-up to a study of a similar election which had been published
the previous fall in Public Opinion Quarterly. Neither of us was content

with the methods and models used in the prior study. Shares are different
than other criteria, be they vote shares, market shares or retail stores’

shares of customers. Different methods are needed to reflect their special
nature. And thus began a research collaboration, running 17 years, so

far.
Though our combined research efforts have covered diverse areas of

consumer choice behavior, in recent years we came to the realization that
our models and analytical methods might be very profitably employed
in the analysis of market-share figures for consumer products. So we

decided to write a book on market-share analysis which was intended
to give not only graduate students in marketing an introduction to the

topic but also front-line managers a practical guide to the various stages
of analysis.

The latter objective was a bit of a problem. Neither of us had exten-
sive business experience, but once our focus was set we learned rather

quickly. We found that so-called optical scanner data (or POS data, as
it is called in Japan) were becoming the major data source for market-

share figures for many packaged consumer goods. We also found that to
be of practical use to front-line managers the data base, the analytical
and interpretive models, and the planning process must all be integrated

into a comprehensive system of data management and computation.
In the course of writing this book one of the authors undertook

a rather ambitious project to develop computer software which is es-
sentially a miniature market information system designed to facilitate



xiv FOREWORD

market-share analysis, with a special emphasis on the utilization of op-
tical scanner data. We are happy to note that the end product of

this project, CASPER, was the Grand Prize Winner of the Ashton-
Tate Framework Applications Contest, co-sponsored (and judged) by PC

Magazine. The development of CASPER led us to contact many prac-
titioners, and brought us a deeper understanding of what is involved in

market-share analysis in business contexts.

We now feel that this book offers front-line managers a combina-

tion of good theory and implementable models, as well as a prototype
market information system from which real-world systems may be de-

veloped. To graduate students this book should be a good reference
source for consumer choice models, market-share models, and new tech-

niques in competitive mapping. In addition, CASPER may be used as
a brand-planning game, through which the students may experience the

complexities of market response under highly competitive conditions. We
tried to give the reader a balanced treatment of the theoretical and the

practical. We put much of the mathematical and theoretical material
into appendices, so as not to interrupt the flow of ideas. An (*) at the
beginning of a section heading signals advanced statistical or theoretical

content which may be skipped by those readers who are bent on practical
applications.

We thank the many colleagues who have assisted the development

of this book. In particular we acknowledge the contributions of Penny
Baron, J. Dennis Bender, Gregory S. Carpenter, Carl T. Finkbeiner,
Sunil Gupta, Dominique M. Hanssens, Charles F. Hofacker, Barbara E.

Kahn, Harold H. Kassarjian, Hotaka Katahira, Robert J. Meyer, David
F. Midgley, Yutaka Osawa, Jagmohan S. Raju, Burton E. Swanson and

John C. Totten. We appreciate the efforts of the Series Editor, Jehoshua
Eliashberg, who along with the reviewers he recruited made valuable

suggestions on the first draft of the book. We thank Zachary Rolnik,
Editor, for his encouragement and support through the administrative

part of creating a book, Marjorie Payne, Production Manager, for her
assistance in producing a better manuscript, and Leah Jackson for copy

editing. We are also grateful to Information Resources, Inc. which pro-
vided the scanner data used in the coffee-market example in the latter
half of this book, to Quaker Oats for a grant which helped get us started

with scanner data in 1983, to the Marketing Science Institute which,
in 1987, aided in the development of brand-planning software used in

Chapter 7, to Beatrice Foods and an anonymous consumer-products firm
which provided exposure to and experience with large-scale commercial
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data, and to an anonymous retailer which aided our understanding of
how scanner-based operations affect the organization of retail activities.

We acknowledge the financial assistance of Cooper Research Inc. for
support in producing the camera-ready version of this manuscript.

Dedication

We dedicate this book to Ann, Joseph and Daniel Cooper, and to Hiroko

and Tauto Nakanishi. The support, love and indulgence of our families
has made the crucial difference in our efforts. We will always remember

and be thankful.

August 1988 Lee G. Cooper
Santa Monica, California, USA

Masao Nakanishi

Nishinomiya-shi, JAPAN
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Chapter 1

Scope and Objectives

1.1 Interest in Market-Share Analysis

In this era of intense competition, both world-wide and domestic, busi-

ness firms of all sizes and varieties have become more and more concerned
with the market-share figures they achieve in the marketplace. From our

personal experience, some managers appear interested as much, if not
more, in market shares as profits or returns on investment. For prod-

uct and brand managers in particular, the sense of urgency associated
with the gains and losses of market shares for the product/brand in their
charge may be likened to what winning or losing of a war front means

to generals or the general staff. Though such military analogies are not
to be taken literally, one fact seems obvious: Market shares command

the attention of business managers as key indices for measuring the per-
formance of a product or brand in the marketplace. Many individuals

in business indeed keep a close watch over day-by-day changes in mar-
ket shares, so much so that market-share movement to them is almost

synonymous to market information.

To the extent that market shares are used as market performance
indices, it is clearly desirable for the individuals concerned to have thor-

ough knowledge of the processes which generate market-share figures
and to be able to analyze the impact of their own actions on market
shares, as well as their profit implications. Lacking such knowledge, one

might be tempted to oversimplify the cause-and-effect relationships be-
tween market shares and marketing variables, or to equate market shares

to profitability (a not unusual tendency even among seasoned business-
men) and fall into deadly traps of blindly competing for market shares

1



2 CHAPTER 1. SCOPE AND OBJECTIVES

for their own sake. Despite the obvious importance associated with it
in many firms, the approach of many managers to market-share analysis

may be described as casual.

The interest in market-share analysis has received new impetus in

recent years, especially since the advent of optical-scanning systems —
POS (point of sale) systems — at the retail level. A POS system collects

sales records (essentially in the form of customer-by-customer receipts)
at check-out counters of retail establishments with optical scanners which
read bar codes of merchandise labels. It then puts the sales records in

a computer (i.e., store controller) where sales records are tabulated into
item-by-item sales summaries. POS systems were originally introduced

in retail stores to improve the efficiency and accuracy of store person-
nel at the check-out counters and in the backroom and have achieved a

considerable degree of success in speeding up check-out operations and
in improving inventory control. POS-generated sales data also have an

obvious potential as the database for merchandising and store manage-
ment. Some authors even suggest that, by linking POS systems with

electronic ordering systems (EOS) which handle order processing as well
as inventory control, store automation will soon become a reality.

POS systems also open up a new source of market-share data at

the retail level for manufacturers of consumer products. POS data have
many advantages over traditional sources of market-share information

such as retail audit, warehouse withdrawal, and consumer panel data,
in that they are fast, accurate, low cost, and detailed. Already various

marketing-research agencies are in the business of gathering POS data
from a sample of stores and supplying manufacturers with summaries

of them. In addition, several research agencies operate optical-scanner
panels (or scanner panels) of consumers in a number of communities
which generate purchase histories per household. It is often pointed out

that scanner panels are superior to the traditional diary panels in their
accuracy and speed. (We will give a more detailed description of those

and other data collection techniques in Chapter 4.)

Though much has been said of the wonderful powers of POS systems,

we believe that so far POS data have been underutilized for marketing-
planning purposes. Considering the apparent advantages of POS data,
this statement may seem improbable to the reader. Yet the current

usage of POS data, whether it be in inventory control or in merchan-
dising planning, is mainly on an item-by-item basis, and little attention

has been paid to the interrelationships between items. Single-item sum-
maries and analyses of POS data are no doubt useful for many purposes,
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but they ignore the complex pattern of interactions which exist among
product classes, brands within a product class, and items within a brand.

Market-share analysis focuses on the competitive interrelations among
brands, and is one area in which POS data are not fully utilized. In our

opinion, the chief reason why the application of POS data is so lagging
in the analysis of competitive interactions, including market-share anal-

ysis, is that the analyst’s understanding of the nature of POS data is
lacking. How does one describe the competitive structure among prod-

ucts, brands, and items within a store? Unless we understand clearly the
process that generates POS or scanner-panel data, we will not be able

to analyze them correctly. Here is a case for having a clear conception
before we can embark on market-share analysis.

Consider the following conversation between the marketing V.P. (or

division manager) and a brand manager.

• Marketing V.P.: What happened to Serve-Right last month?

• Brand Manager: It’s OK, though our share went down by two
percentage points.

• Marketing V.P.: You mean we now have only a 13% share of the
market? We’ve been losing our share three months in a row!

• Brand Manager: Yes, but our volume is up by 2% over the same

month last year.

• Marketing V.P.: Yeah, but that may be because we are just coming

out of a recession. How are Dominant and Superior?

• Brand Manager: Superior gained three percentage points last month.
They started a heavy trade promotion two months ago. Dominant

is in the same boat as we are. They’ve been losing their share, but
their volume is up.

• Marketing V.P.: Haven’t we been giving the trade a 15% rebate
for three months?

• Brand Manager: Right, but the stores aren’t cutting their prices

as much as we thought they would. Superior gives them rebates
and allowances for cooperative advertising, and that may be what

we need to do to get the stores to pass the rebates through to the
consumers.
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• Marketing V.P.: Our retail prices are already lower than either
Dominant or Superior. Maybe we are not getting enough shelf

space.

• Brand Manger: Well, I’ve thought of that too. Perhaps we can do

more TV spots in major markets to let the stores know that we
are serious about pushing Serve-Right.

• Marketing V.P.: Look, I can’t give Serve-Right any more media
budget. I have other brands to think about! Get your act together
by Friday, and tell me how you propose to improve our market

position.

This conversation is, of course, hypothetical (we hope that no real-
world brand manager would be this naive!), but points to the complex-

ities and difficulties associated with market-share analysis. Much con-
fusion seems to arise from the fact that the market share for a firm’s

brand/product is affected not only by the firm’s own actions but also
by the actions of competitors. Moreover, there are influences of such

factors as seasonal variations in sales and general economic conditions
which affect the performance of all brands in the industry. The plight

of the brand manager in the above example may be attributable to his
inability to isolate the effects of his firm’s own actions from the effects of

all other variables including competitors’ actions. What is lacking here
is a systematic approach to market-share analysis.

In part, the preoccupation of many managers with market shares

may be the making of the strategic market-planning school of marketing
thought, which has been promulgated by such authors as Abell and Ham-

mond1 and Buzzell,2 since the 1970s. They emphasize the importance
of market shares so much that, if one accepts their tenets naively, secur-

ing market shares will be the primary objective in any firm’s marketing
strategies. This stance may be justifiable in a new, growing industry,

since, according to experience analysis which forms the core of their the-
ory, maintaining the market-share leadership in a new, growing industry

will automatically assure a firm the largest experience (i.e., cumulative
sales volume) and therefore the lowest production and marketing costs.
However, the determination to pursue the largest share in an industry

1Abell, D. F. and J. S. Hammond [1979], Strategic Market Planning: Problems &

Analytical Approaches , Englewood Cliffs, New Jersey: Prentice-Hall.
2Robert D. Buzzell, Bradley T. Gale & Ralph G. M. Sultan [1975], “Market-Share

— A Key to Profitability,” Harvard Business Review , January-February, 97-106.
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may not be optimal in those situations where the market for a product is
already at a saturation level, for the share expansion for one brand may

be achieved only at excessive costs in such a situation. Market-share
leadership is clearly not a universal objective in every situation.

Though this is an admittedly simplistic description of the strategic
market-planning concept, we need to examine more carefully whether

such importance attached to market-share expansions is justified, as this
school of marketing thought suggests. Again, we will need a conceptual

framework in order to perform such an examination.

1.2 Need for a Analytical Framework

Market-share analysis is inherently more complex than the sales analysis

for a single product/brand simply because one is required to take the
competitive factors into account. To a mind which is used to analyzing

the performance of one product/brand at a time, the complexity involved
in market-share analysis, as described in the preceding paragraphs, might

look formidable indeed. However, it is the authors’ view that the difficul-
ties lie in the analyst’s state of mind rather than in the lack of analytical

methodology. We posit that the analyst’s task will be greatly facilitated,
if he/she has a reasonably accurate view of the market and competition.
In a sense, taking a product/brand at a time for analysis represents an

extremely distorted view of the market, in which the analyst implicitly
assumes that the product/brand (either word would mean the same in

this case) partially monopolizes the market. Any strategy or plan based
on this implicit assumption is bound for failure sooner or later, if the

structure of actual markets tend toward what economists call oligopoly
and monopolistic competition. Many have learned this fact, in some cases

painfully, by watching their best-laid plans crumble in front of their eyes
because of competitors’ unexpected responses. It is like taking a picture

of competition through a telephoto lens. While one brand may be in
excellent focus, the foreground or background are either excluded or out
of focus. As pretty as the picture may seem, too much is ignored by this

view.

In this book we shall attempt to provide those individuals who are

interested in analyzing market shares for some products or brands with
a framework for analysis, which in our opinion promises a most meaning-

ful view of the market and competitive structure. The reader will find
various models of the market and competition, the most prominent of
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which is called a “Multiplicative Competitive Interaction (MCI) Model”
or an “Attraction Model” and has the following general structure.

si =
Ai∑m

j=1 Aj
(1.1)

Ai =
K∏

k=1

fk(Xki)
βk (1.2)

where:

si = the market share of brand i

Ai = the attraction of brand i

m = the number of brands

Xki = the value of the kth explanatory variable Xk for brand i (e.g.,
prices, product attributes, expenditures for advertising, distribu-

tion, sales force)

K = the number of explanatory variables

fk = a monotone transformation on Xk, (fk(·) > 0)

βk = a parameter to be estimated.

A detailed discussion of the above model will be given in Chapter 2,

and therefore we will only note here that the model is based on a simple
idea that market shares are equal to the shares of attractions of respective

brands, and that marketing instruments interact to determine, at least
partially, the attraction of each brand. We will illustrate throughout this

book how using appropriate market-share models such as the MCI model
not only increases the analyst’s understanding of the market and helps
the planning process but also facilitates the analyst’s tasks considerably

in doing so. Furthermore, we will show that the communication of the
results of market-share analysis within a firm will be greatly facilitated

by the adoption of a meaningful model. As an illustration consider the
following conversation between Marketing V.P. and Brand Manager in

another firm.

• Marketing V.P.: What happened to Superior last month?
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• Brand Manager: It is doing all right. Our share is three percentage
points up. Would you like to see the trend? (Hit a key to select

from a graph menu on a workstation on the desk.)

• Marketing V.P.: (Looking at the display) I see Dominant and

Serve-Right are down. Is it because we’ve done the trade pro-
motion?

• Brand Manger: Yes, that and our quality. We can price Superior
5% higher than our competition and still increase our share. The
rest of the market is very price-competitive, but we are relatively

well protected.

• Marketing V.P.: Show me the (competitive) map for price. (Brand

Manager hits several keys, and a diagram emerges on the screen.)

• Marketing V.P.: The quality improvement sure has changed the

picture. At shelf price, we are no longer directly competing against
Dominant. We have a lot of clout on Serve-Right pricewise, but
we don’t want to start a price war. When they promote heavily, it

hurts our share.

• Brand Manager: As I said, we needn’t worry about retail prices.

We can show the stores that pricing Superior 3% higher than Dom-
inant will improve their profits. By the way, we can stop the re-

bates now. The trade promotion has given us a pretty good store
penetration, and we will keep it even if we stop rebates.

• Marketing V.P.: How do you know?

• Brand Manager: With our share going up to 30% in many stores,
they don’t want to drop us, and, by pricing Superior 3% higher,

they can get more margin from us than from Dominant. We will
keep the promotional allowance, though. It doesn’t cost us much

because the stores and we split the costs. It is good to have some
exposure in newspapers.

• Marketing V.P.: You mean it is better to put money in newspapers
than in TV spots? Show me the elasticities for promotion. (Brand
Manager selects several tables and flicks them on the display.)

• Brand Manager: You see that the elasticities for (newspaper) fea-
tures are higher than those for TV spots or magazine ads. We may
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want a big splash in December when the promotional elasticities
are higher, but until then cooperative ads will do fine.

• Marketing V.P.: Let’s see the provisional Income Statement for the
next month. (Brand Manager shows another table on the display.)

OK, we seem to be doing just as well as we can do. Keep up the
good work and I’ll see you next month.

The above conversation is, of course, hypothetical, and may sound
suspiciously like science fiction. The authors have no intention of creating

an illusion that marketing decision making can be mechanized or even
automated by using computers. However, note that in this case both the

product manager and brand manager are looking at the situation from
the same analytical framework. In fact, a computer is not an essential

element in this conversation. Although the marketing workbench as a set
of powerful computer-based tools and models is a growing reality,3 no
workstation or personal computer will help if the individuals involved do

not share a common understanding of the market and competition.

The persons in the above conversation are primarily thinking in terms

of elasticities (an economic concept which many readers no doubt con-
sider as abstract as demand curves). They are communicating well

enough because both of them have the same understanding of this term.
We may add that nothing is said about models in this conversation. The

concept of elasticities is generic in the sense that it does not depend on
a specific model of the market or competition. A model comes into the
picture when one tries to estimate actual elasticities or predict future

ones. The MCI (attraction) model mentioned above will give one set of
estimates; other models will give other estimates. To the extent that

one model is accepted by the managers in a firm as a meaningful view
of the market and competition, elasticity estimates based on the model

will be also acceptable as the basis for marketing decisions. This is why
we believe that decision processes, as well as communication processes,

in a firm will be greatly facilitated by the organizational acceptance of
a model of the market and competitive structure.

Formally adopting an analytical framework has another advantage:

it will help the firm to build an effective market information system.
The emphasis in this marriage between information-systems concepts

and market-response modeling is simply that structuring data so that

3See McCann, John M. [1986], The Marketing Workbench: Using Computers for

Better Performance , Homewood, IL: Dow Jones–Irwin.
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they are relatable to consumer demand provides a powerful organizing
principle for the information system and provides the potential for ad-

dressing issues such as the effectiveness of marketing efforts. As will be
discussed in more detail later, what data should be collected and how

they are analyzed are largely dependent on the firm’s view of the market
and competition. If, for example, the market is seen as virtually consist-

ing of a single segment, the analyst’s task will be greatly simplified. Or if
the firm sees competition as having negligible effects on the performance

of its product/brand, there will be no sense in collecting competitive
data. But such simplistic views are often inadequate. If the firm accepts

that there are distinct and heterogeneous consumer segments and that
the marketing instruments of the firm and its competitors all interact to
create the attractiveness of the products/brands to these segments, the

analyst will have to collect the types of data which will allow him/her to
perform more comprehensive analyses of the effectiveness of the firm’s

marketing activities in a competitive environment. Thus an analytical
framework, i.e., a view of the market and competition, determines essen-

tially the requirements for a firm’s information and analysis system.

The reader should be reminded that there is no single correct ana-

lytical framework for market-share analysis. The preponderance of the
MCI model (or any other model for that matter) in this book should not
suggest the authors’ insistence that this model is the correct view of the

market. A model is merely one approximation to the reality of the market
and competition, and it would be unwarranted to insist one model rep-

resents the truth. Even though we believe that the MCI model allows us
rich interpretation of market-share data without imposing heavy demand

on our analytical capacity, the analyst will have to choose consciously
among several alternative representations (i.e., models) of the structure

of market and competition which fits best the specific conditions he/she
faces. This requires a thorough understanding of the characteristics and

implications of each model. In the next two chapters of this book, basic
concepts necessary to analyze market-share data and several alternative
models will be explained as comprehensively as possible. The deeper the

reader’s understanding of necessary concepts and models, the easier it
will be for him/her to follow the subsequent discussions of data require-

ments and collection techniques (Chapter 4) and parameter-estimation
techniques (Chapter 5).
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1.3 The Process of Market-Share Analysis

Before we begin to describe the methodology of market-share analysis, it
is perhaps beneficial to define its basic characteristics so that the reader

will not be misled as to its relevance and eventual applicability to his
or her own problems. The three key characteristics are that market-

share analysis is competitive, descriptive as well as predictive, and profit-
oriented .

First, market-share analysis is competitive. This implies that the ef-
fects of one’s actions must be analyzed in conjunction with the market
positions and actions of competitors. (In economic jargon, the marginal

effect of a marketing variable is a function of competitors’ actions and
their market shares.) This also means that one will have to distinguish

those factors which affect one’s product/brand from more general factors
which affect the entire industry (e.g., seasonality in product usage, and

business and economic conditions). Finally, this means that, given com-
petitors who are free to adopt any marketing strategies, market-share

prediction also involves the prediction of competitors’ future actions,
which is a difficult undertaking in itself. Many experienced managers

know that their best-laid plans mean little if they fail to predict cor-
rectly the courses of action the competitors are going take.

At this juncture we emphasize that the market-share analysis we

explore in this book is basically for products in either the growth or ma-
turity (i.e., saturation) stages of their product life cycle. In this context,

it is important for one to distinguish between a new brand for a firm in
an established industry and an entirely new product which is creating a

new industry. We do not belittle the importance of being able to predict
the future shares for a new product, but we envision that the analytical
approach for predicting the performance of a new product is substan-

tially different from that for an established product. When a radically
new product is introduced by a firm in the market, it usually holds a

temporarily monopolistic position due to technological advantages or le-
gal protection (i.e., patents). Because the structure of the market and

competition in the introductory stage of the product life cycle is so dif-
ferent from that in either the growth or maturity stages, the approaches

to market-share analysis in this book may not be directly applicable to
new products.

Second, market-share analysis must be descriptive as well as predic-

tive. A common tendency among business managers is that if they can
make good forecasts of market shares, they expect nothing more. The
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ability to make accurate predictions of future shares is indeed a major
contribution of market-share analysis, but we do not believe that it is

enough. Market-share analysis should provide the managers with much-
needed information on the structure of the market and competition and

the influence of marketing actions on brand performance — all of which
are indispensable for them to be able to establish viable marketing strate-

gies. An example is given by the competitive-map analysis of Chapter 6.
Knowing that competitor A is vulnerable to our actions, but competitor

B is not, or knowing one’s share is much affected by the actions of com-
petitor C, clearly gives a manager a better sense of competitive moves

he/she can make in order to deal successfully with competitors.

Third, market-share analysis is profit-oriented in the sense that any

firm is interested in not only market-share movement, but also its profit
consequences. One might talk about a plan to expand the market share

for a firm’s product/brand, by improving quality, reducing price, adver-
tising more, employing more sales persons, etc. But the key question
obviously is, “Is it worth our effort to increase the market share?” Ex-

perience analysis , for example, tells us to try to expand one’s market
share if the increase in share allows the firm to have the leading posi-

tion on the experience curve, that is, if the resultant share is the largest
among the competitors. This in turn suggests that for firms with cur-

rently small shares the mad rush to become the industry leader may
have dire consequences. The ability to predict the cost of achieving a

certain market-share level should be as valuable for a firm as the ability
to estimate the likelihood of achieving that share. We will return to this

theme in the brand-planning exercises in Chapter 7 of this book.

Based on the above characterization, we assert that the basic goal of

market-share analysis is to evaluate the effectiveness of marketing actions
in a competitive environment. We propose the following scenario for the
process of market-share analysis. (See also Figure 1.1.)

1.3.1 Stage 1: Specification of Models

This stage is for the selection of appropriate models for describing market-
share movement and changes in overall (industry) sales volume. (In a
simplest specification, a firm’s sales volume is equal to the product of

industry sales volume and its market share.) At the time when a firm
is developing a system for market-share analysis, this stage is indispens-

able since the models determine data requirements in the data-collection
stage. If the firm already has an ongoing data stream, the specification
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Figure 1.1: The Process of Market-Share Analysis
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task becomes one of choosing a model which will allow the analyst to
assess the impact of the variables in the data stream on demand. After

the initial specification, this stage is only repeated when the analyst feels
that the underlying structure of the market and competition is chang-

ing or has changed, and that it is necessary to modify or recalibrate
the model. Modification may also be motivated by new data becoming

available or by the desire for a more comprehensive explanation or as-
sessment. Techniques for this specification step, such as time-series and

experimental analyses, can help address issues concerning the duration
of marketing effects and whether marketing instruments interact.

1.3.2 Stage 2: Data Collection and Review

Market-share data may be obtained from many sources. A traditional

source was the so-called retail store-audit data, but since the adoption
of optical scanners (i.e., POS systems) more data at the retail level are

being generated by scanners. Wholesale warehouse withdrawals are also
used as a source of market-share data for many consumer products. Con-
sumer surveys and diary panels are sometimes used for market-share es-

timation. For many firms the only way to get own market-share figures
is to divide the firm’s own sales volume by what it can estimate of the

industry sales volume for the same period and area.

One critical problem with the data collection stage for market-share

analysis is the need for information on marketing activities of competi-
tors as well as the firm’s own activities. Any reasonably designed market

information system should be able to meet adequately the information
requirement on the firm’s own activities, but the information on com-

petitors’ activities is a different matter. This requires careful monitoring
of competitors’ activities in the market and compiling a comprehensive

file for each competitor.

Optical scanner data at the retail level, if they are available, are

capable of supplying competitive information for a limited set of mar-
keting variables such as shelf price and store displays. These data may be

combined with available information on newspaper features, and manu-
facturers’ and stores’ coupons. Advertising expenditures or benchmarks
such as target-audience rating points (TARPs) or gross rating points

(GRPs) can be used to assess how these efforts relate to demand. Scan-
ner panels can be tapped for measures such as brand inventories in panel

households, indices of brand loyalty or time-since-last-purchase. These
panels are also rich sources for potential segmentation by usage frequency
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or style, or demographic characteristics.

Simple, graphical summary relating market shares to other collected

data can reveal a great deal about the nature of market response and
competition.

1.3.3 Stage 3: Analysis

Once necessary data are collected for an adequate number of periods
and/or areas (to give sufficient degrees of freedom), the analyst can pro-

ceed to:

1. Estimation of Model Parameters: Once the appropriate

models are chosen, the next step is to estimate the parameters of the
models. Statistical techniques such as log-linear regression analysis and
maximum-likelihood estimation will be used in this step. Even though

the model specification is not changed, it may be necessary to re-estimate
parameters periodically. This is desirable not only for the purpose of

adapting parameter values to changing conditions but also for the pur-
pose of improving the accuracy of estimates.

2. Conversion to Decision-Related Factors: Model parameters
themselves provide the analyst or manager with little information as to

the structure and occurrences in the market and competition. From a
decision maker’s viewpoint, more immediately useful information may
be the responsiveness of market shares toward marketing activities of

the own firm and competitors as summarized by market simulators. Or
it may be the visual presentation (map) of the relative market positions

of competing products/brands. It takes some ingenuity to produce a
representation that is easily understood by managers who are not quan-

titatively oriented.

1.3.4 Stage 4: Strategy and Planning

The planning stage may be divided into two steps.

1. Strategy Formulation: In this step the information obtained in
the analysis stage is used for the formulation of marketing strategies.4

It is hoped that descriptive, rather than predictive, types of analysis will
give the analyst and manager(s) concrete suggestions for formulating

4In this book the term strategy is used in a rather loose sense, and strategy and
tactics will be used interchangeably. Since an understanding of tactical response is
fundamental to strategy formulation, and given the short-term nature of market-share
analysis, maintaining the distinction would be too tedious.
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marketing strategies. The graphic summaries, for example, may suggest
more effective marketing strategies.

2. Forecasting and Planning: Future market shares and sales vol-
umes will be forecasted on the basis of a marketing plan. It will be non-

sensical to speak of forecasts without an explicitly stated plan. Market
simulators require, for example, explicit assumptions about competitive

activities. Consequently, they produce conditional forecasts (i.e., condi-
tional on these assumptions). A plan can be evaluated against various

competitive scenarios. Also, it is theoretically possible, but not always
practical, to search for an optimal (i.e., profit-maximizing) plan.

1.3.5 Stage 5: Follow-Up

It is critically important that the analyst reviews the performance of
the firm’s product/brand after marketing plans are put into effect. A

careful review of one’s plans and actual performance will improve not
only future planning but also the techniques for market-share analysis. In

doing a follow-up, it is not enough just to look at whether market shares
were accurately forecasted. Market shares and consequently actual sales
volume differ from the forecasted values for three basic reasons.

1. Forecasts of industry sales volume were off.

2. Forecasts of market shares were off.

3. Marketing activities were not carried out as planned.

If the actual performance is at variance with the planned, It is essential

for the analyst to pin-point the cause of variance by careful analysis. The
so-called variance analysis5 may be a useful technique for this purpose.

We have summarized here the process of market-share analysis as
we view it. The reader will find that the organization of Chapters 2

through 7 of this book follows closely the stages of this process. Chap-
ters 2 and 3 describe issues related to modeling (Stage 1: Specification
of Models). Chapter 4 deals with the issues related with data collection

and aggregation (Stage 2: Data Collection). Chapter 5 describes various
techniques of parameter estimation (Stage 3: Analysis. Parameter Esti-

mation). Chapter 6 (Competitive Maps) is related to reduction of data
to decision-related factors (Stage 3: Analysis. Conversion to Decision-

Related Factors). Chapter 7 is devoted to decision-support systems for

5Hulbert, James & Norman Toy [1977], “A Strategic Framework for Marketing
Control,” Journal of Marketing , 41 (April), 12–20.
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planning (Stage 4: Strategy and Planning). Stage 5: Follow-Up is also
dealt with in Chapter 7. Chapter 8 will discuss various remaining prob-

lems associated with market-share analysis and the potential avenues for
future research in this area. æ

0.1



Chapter 2

Understanding Market

Shares

2.1 Market Shares: Definitions

What do we mean by market share? An obvious definition of a firm’s

market share might be “that share of the market commanded by a firm’s
product (or brand).” But this is merely a tautology and not a definition,
and therefore does not help us understand market shares. Its basic dif-

ficulty lies in the ambiguity of the term market . One normally thinks of
a market being a collection of persons (or institutions) who are likely to

purchase a certain class of product. For consumer products and services,
the market is a group of consumers who are potential buyers of a product

or service, such as detergent, air travel, or coffee. (For simplicity, the
term product is to be understood to encompass services hereafter, unless

otherwise specified.) Those consumers who never buy a product are out
of the market . If we define market in this manner, market shares should

mean shares of potential consumers .

However, clearly this is not the common usage of the term. In most
cases, market shares mean shares of the actual sales (either in quantity
sold or dollar volume) for a product in a given period and in a given

geographical area. Market in those situations should be taken as the sales
performance of a product class in the market, rather than a collection

of buyers for the product. In this book the term market shares will be
used mostly in this latter sense. This concept of market shares may be

17
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more explicitly stated in the following manner.

si =
Qi

Q
(2.1)

where:

si = the market share of firm i

Qi = the sales (quantity sold or dollar volume) of firm i’s product

Q = the total sales (quantity sold or dollar volume) for the market

Q =
∑m

j=1 Qj

m = the number of competing firms.

The quantity Q in the above equation is commonly called the industry
sales , and we will follow this convention. Note that in this formulation

market shares are a temporally and spatially specific concept, that is, de-
fined and measured only for a specific period and a specific geographical

area. It does not make much sense for one to talk about a firm’s share in
general; one must say instead a firm’s share of the U. S. market in 1986,

that of the European market in 1987, etc. This is because both the nu-
merator and denominator of equation (2.1) are time- and area-specific,

and will have to be matched for the same period and geographical area.
We shall have occasion also to refer to shares of potential buyers, but

they will be denoted as consumer shares or buyer shares , so that there

will be no confusion. Note that television audience ratings are consumer
shares in this sense. In addition, a retail store’s share of consumers

who come to the shopping district in which it is located will be called a
shopper share to distinguish it from its share of consumers from a certain

geographical area or segment (e.g., consumer share). Most analytical
techniques for market-share analysis will be directly applicable to the

analysis of consumer shares with slight changes in the interpretation of
equation (2.1), where Qi and Q are replaced by the number of consumers,

Ni and N , respectively. These points will be further clarified in a later
section.

A further issue which should be addressed at this point is concerned

with the choice of the level of distribution channel from which sales
figures are obtained for computing market shares. When a manufac-

turer uses both wholesalers and retailers in its channel of distribution,
it may possible to obtain three sets of sales figures, one each at the
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factory, wholesale, and retail levels. Complications arise since the sales
figures at those three levels do not generally coincide. It is, of course,

easy for the manufacturer to get sales (or shipment) data at the factory
level, but are they meaningful for the purpose of market-share analysis?

Some channels of distribution are notorious for their insensitivity to the
changes in consumer demand. After all, aren’t retail-sales figures more

directly indicative of the firm’s performance in the market? Isn’t one
of the most basic questions in market-share analysis how consumers are

influenced by prices and promotions at the retail level? Or lacking retail-
sales figures (which is not an uncommon condition for many firms), are

wholesale (withdrawal) figures more appropriate than factory-shipment
figures? Those are the questions which must be answered by the ana-
lyst before market shares may be computed. Much is dependent on the

nature of products and services and the firm’s ability to collect appropri-
ate data. But, since assessing the effectiveness of marketing instruments

in influencing consumer demand is one of the most importance uses of
market-share analysis, the general principle should be to measure market

shares as close as possible to the consumer-demand level.

2.2 Defining Industry Sales

We have defined market shares on the basis of sales performance of prod-
ucts and services, but this definition is not concrete enough. In order
for one to be able actually to compute market shares for one’s firm or

brand, it is necessary to measure the denominator of equation (2.1),
which is commonly called the industry sales. There are several problems

associated with this measurement. First and foremost, what is a rele-
vant industry? As the first approximation, let’s say that an industry is

composed of a set of firms which are competing for the same group of
(potential) buyers.1 But how does one know which firms are competing

for the same group of buyers? Here we will have to leave the matter
pretty much to the experience and judgment of the analyst.

In many business contexts the market boundaries are known quite
well. But even in the absence of such knowledge, or in times when it is
proper to question prior assumptions, there is a principle to guide the

analyst in delineating the boundaries for an industry, that is, choosing a
set of firms which compete against each other. We know that the indus-

1Note that the number of competitors in an industry is given by m in equation
(2.1).
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try boundaries change, depending on what level(s) of buyer needs and
wants for which firms compete. The more basic the needs for which firms

compete, the greater will be the number of firms in an industry. Con-
versely, the more specific the attributes (of products and services) with

which firms choose to compete, the smaller will be the number of firms in
an industry. To illustrate, if we assume that firms compete for the basic

human need of personal transportation, all firms which produce auto-
mobiles, motorcycles, and bicycles (even skateboards!) compete against

each other and therefore form an industry. On the other hand, if we
narrowly select those firms which choose to compete solely on the basis

of the luxury of interior fixture of a vehicle, only a small number of firms
will be in an industry.

But the principle is not easily translated into practice. There are
techniques (such as multidimensional scaling) which may be used for

delineating industry boundaries, but in the authors’ opinion they are
more exploratory than definitive. Instead, we will propose in this book a

more developmental approach. Since the models in this book are able to
give the analyst a basis for evaluating industry boundaries, why not use
them empirically to form the relevant boundaries for an industry? In this

approach, the analyst will first proceed with tentative boundaries for an
industry, and, with the increase in experience and additional data, keep

modifying the boundaries to converge eventually on a workable definition
of an industry. If the focus is on understanding the effectiveness of

one’s marketing efforts, one wants an industry definition broad enough
to include all threats to one’s marketing program, but narrow enough

that the same set of measures of marketing effort and performance can be
applied to all competitors. We will illustrate this with the Coffee-Market

Example presented in Chapters 5 – 7.

Second, even if one is successful in defining an industry, it may not

be possible to know the sales (quantity sold or dollar volume) of firms
other than one’s own. Fortunate are those few industries for which trade

associations or governmental agencies regularly gather data on industry
sales. (The automobile industry is a prime example.) There are also

those consumer products for which some agencies maintain continuous
measurement of sales at the retail level for nearly all competing firms
in the market (see Chapter 4). Lacking such associations/agencies, the

estimation of industry sales may pose to the analyst a difficult research
problem. One may survey buyers for their purchases (in a period) and es-

timate industry sales by multiplying average purchase size by the number
of potential buyers. Or one may deduce industry sales from an indicator
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which is known to have a high correlation with them. With whatever
technique one chooses, it may be only possible to estimate one’s own

share, but impossible to estimate the shares of competitors. As is shown
in later chapters, this inability to estimate competitors’ shares seriously

compromises the efficacy of market-share analysis.

To summarize, the definition of relevant industry boundaries is not
always a simple and precise operation. It requires subjective judgment

of the analyst based on his or her experience and thorough knowledge
of product, market, and competitors. But if industry definition is not a

straightforward operation, one might be better off to select models which
do not heavily depend on the correct definition of a relevant industry.
As will be shown later, the MCI model and its relatives are less sensitive

to how an industry is defined than the linear or multiplicative models
are, since the former is adaptable to the so-called hierarchical market

segments (see Chapter 3).

2.3 Kotler’s Fundamental Theorem

With the preliminaries in the last two sections, we are now in a position
to explore further the relationship of a firm’s market shares with its

marketing activities. For the time being we shall assume that a relevant
industry is defined and industry sales are measured. Kotler2 posits that a

firm’s market share is proportional to the marketing effort of its product.
In mathematical notation, this supposition may be written as:

si = k ·Mi (2.2)

where:

Mi = the marketing effort of the product of firm i

k = a constant of proportionality.

This is not a bad assumption. If a firm’s marketing effort were measur-
able, one would think (hope?) that the greater the marketing effort of

one’s firm the greater should be its market share.

For equation (2.2) to be useful, setting aside for the time being the
question of how one might measure marketing effort, one must know the

2Kotler, Philip [1984], Marketing Management: Analysis, Planning, and Control ,
Fifth Edition, Englewood Cliffs, NJ: Prentice-Hall, Inc.
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value of proportionality constant, k. But market shares for an industry
must sum to one, i.e.,

m∑

i=1

si = 1 .

This implies that
m∑

i=1

k ·Mi = 1

or
m∑

i=1

Mi =
1

k
.

Hence

k =
1

∑m
i=1 Mi

.

By substituting this value of k in equation (2.2), we have

si =
Mi∑m

j=1 Mj
. (2.3)

This last equation says that the market share of firm i is equal to the
firm’s marketing effort divided by the sum of marketing effort for all

competitors in the industry. In other words, it says that a firm’s market
share is equal to its share of marketing effort, a statement which certainly
seems plausible. Equation (2.3) is what Kotler calls the fundamental

theorem of market share (Kotler [1984], p. 231).

It is interesting to note that this formulation is so basic that a whole

series of variations may be devised from it. For example, if firms tended
to differ in terms of the effectiveness of their marketing effort, one may
write

si =
αi ·Mi∑m

j=1 αj · Mj
(2.4)

where αi is the effectiveness coefficient for firm i’s marketing effort. This
implies that, even if two firms expend the same amount of marketing

effort, they may not have the same market share. If one firm’s marketing
effort is twice as effective as that of the other, the former will achieve a

market share twice as large as the other’s share.3

So far we stepped aside the question of how one goes about measur-
ing the marketing effort for a firm’s product. Here Kotler additionally

3For other variations, see Kotler [1984], pp. 224-237.
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assumes that a firm’s marketing effort is a function of its marketing mix,
both past and current. Mathematically, we may write,

Mi = f(Pi, Ai, Di, . . .) (2.5)

where:

Pi = the price of firm i’s product

Ai = the advertising expenditures of firm i

Di = the distribution efforts (e.g., trade allowances given by firm i).

There are wide choices in the specification of the functional form
for equation (2.5). For example, if we choose it to be a multiplicative

function
Mi = P pi

i · Aai
i · Ddi

i

where pi, ai, di are parameters to be estimated, and substitute this
expression in (2.3) or (2.4), the resultant market-share model will be an

MCI model (see Chapter 1). Or if we choose an exponential function

Mi = exp(pi · Pi + ai ·Ai + di · Di)

the market-share model is called the multinomial logit (MNL for short)
model. We will have more to say on the choice of functional forms.

2.3.1 A Numerical Example

At this point a numerical example may help the reader understand the
nature of the models proposed by Kotler. Table 2.1 gives a hypothetical

industry with three firms, with the values of the marketing mix for each
and computed market shares.

The model used here is a basic MCI model (equation (2.4) and the
multiplicative function for Mi). The share of firm 1 is computed in the

following manner.

M1 = 0.9× 10.50−1.8 × 80, 0000.6 × 54, 0000.8 = 69802.47

M2 = 1.2× 11.30−1.8 × 90, 0000.6 × 48, 0000.8 = 79648.67
M3 = 1.0 × 9.80−1.8 × 70, 0000.6 × 65, 0000.8 = 94011.84

s1 = 69802.47/(69802.47+ 79648.67 + 94011.84) = 0.2867 .

In this example price is the most dominant factor. Firm 2 has a
higher marketing-effort effectiveness, but its share is less than firm 3

because of a higher price. Compare Table 2.1 with Table 2.2 in which
firm 2 reduced its price to $10.00. Now its share is the largest.
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Table 2.1: Numerical Example of Kotler’s Fundamental Theorem

Marketing Advertising Trade Market

Effectiveness Price Expenditure Allowances Shares
Firm Coefficient ($) ($) ($) (%)

1 0.9 10.50 80,000 54,000 28.67

2 1.2 11.30 90,000 48,000 32.72
3 1.0 9.80 70,000 65,000 38.61

Parameters –1.8 0.6 0.8

Table 2.2: Numerical Example — The Effect of Reducing Price

Marketing Advertising Trade Market

Effectiveness Price Expenditure Allowances Shares
Firm Coefficient ($) ($) ($) (%)

1 0.9 10.50 80,000 54,000 26.54
2 1.2 10.00 90,000 48,000 37.73
3 1.0 9.80 70,000 65,000 35.74

Parameters –1.8 0.6 0.8

2.4 *Market-Share Theorem

Kotler’s fundamental theorem gives us one justification for accepting
equation (2.3) as a valid representation of the relationship between a

firm’s marketing mix and its market share. This market-share-as-share-
of-marketing-effort representation makes a lot of intuitive sense, but

there are other ways than Kotler’s to derive such a representation. We
will review some of them in a later section, and only look at one impor-
tant theorem derived by Bell, Keeney and Little4 here.

Bell, Keeney, and Little (BKL hereafter) consider a situation where,
in making a purchase of a product, consumers must choose one brand
from a set of alternative brands available in the market. They posit

that the only determinant of market shares is the attraction which con-
sumers feel toward each alternative brand, and make the following as-

sumptions about attractions. Letting Ai be the attraction of brand i

4Bell, David E., Ralph L. Keeney & John D. C. Little [1975], “A Market Share
Theorem,” Journal of Marketing Research , XII (May), 136–41.



2.4. *MARKET-SHARE THEOREM 25

(i = 1, 2, . . . , m) and si be its market share,

Axiom A 2.1 Ai ≥ 0 for all i and
∑m

i=1 Ai > 0 (i.e., attractions are
nonnegative and their sum is positive).

Axiom A 2.2 Ai = 0 =⇒ si = 0. (The symbol =⇒ should read “im-

plies,” i.e., zero attraction implies zero market share.)

Axiom A 2.3 Ai = Aj =⇒ si = sj (i 6= j) (i.e., equal attraction
implies equal market share).

Axiom A 2.4 When Aj changes by ∆, the corresponding change in
si (i 6= j) is independent of j (e.g., a change in attraction has a sym-

metrically distributed effect on competitive market share).

From those four axioms they show that the following relationship
between attractions and market shares may be derived.

si =
Ai∑m

j=1 Aj
(2.6)

Perhaps no one would argue the fact that equation (2.6) and equation

(2.3) are extremely similar. True, equation (2.3) and (2.6) represent two
rather distinct schools of thought regarding the determinants of market
shares (a firm’s marketing effort for the former and consumer attraction

for the latter). But an additional assumption that the attraction of a
brand is proportional to its marketing effort (which is not unreasonable)

is all that is required to reconcile two equations. It is rather comforting
when the same expression is derivable from different logical bases.5

BKL also show that a slightly different set of assumptions also yield
equation (2.6). Let C be the set of all alternative brands from which

consumers make their choice.

Axiom B 2.1 Ai ≥ 0

Axiom B 2.2 The attraction of a subset S(⊆ C) is equal to the sum of

the attractions of elements in S.

Axiom B 2.3 Ai is finite for all i and non-zero for at least one element
in C.

5Axiom A 2.4 is has been the subject of critical discussion, as will be developed
later.
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Axiom B 2.4 If the attractions of subsets S(1) and S(2) are equal, their
market shares are equal.

The last axiom establishes the relationship between attractions and
market shares. BKL observe that, if we add an assumption that

m∑

i=1

Ai = 1

in lieu of B 2.4, Ai in this set of axioms satisfies the assumptions for prob-

abilities in a finite (discrete) sample space. Because of this BKL suggest
that attractions may be interpreted as unnormalized probabilities . How-

ever, this in turn suggests that if attractions were to follow axioms B 2.1
through B 2.4, by normalizing the Ai’s through (2.6), market shares (si)

may be interpreted as probabilities. This latter interpretation seems to
confuse an aggregate concept (that is, market shares) with an individ-
ual (or disaggregated) concept (that is, probabilities). Only when the

market is homogeneous (i.e., not composed of systematically different
consumer segments), can market shares and choice probabilities be used

interchangeably. We will return to this point in section 2.8.

2.5 Alternative Models of Market Share

The previous two sections gave the rationales behind the MCI model and

its close cousin, the MNL model. We now give explicit specifications to
those models.

MCI Model:

Ai = exp(αi) ·
K∏

k=1

Xβk

ki · εi (2.7)

si =
Ai∑m

j=1 Aj

MNL Model:

Ai = exp(αi +
K∑

k=1

βk ·Xki + εi) (2.8)

si =
Ai∑m

j=1 Aj

where:
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αi = a parameter for the constant influence of brand i

εi = an error term

and the other terms are as previously defined in Chapter 1. In the fol-

lowing parts of this book, we will use attraction, rather than marketing
effort , to describe Ai, because it is a more accepted terminology, keeping
in mind that this implies the assumption that attraction is proportional

to marketing effort. Note that the MCI model above is a version of the
general MCI (attraction) model in Chapter 1 in that the monotone trans-

formation, fk, is an identity transformation. The MNL model is another
version of the general model where fk is an exponential transformation.6

But the MCI and MNL models are not the only models of market
shares. A common formulation is that of the linear model which assumes

simply that a brand’s market share is a linear function in marketing-
mix variables and other relevant variables. Another common form is

the multiplicative model , where market shares are given as a product
of a number of variables (raised to a suitable power). Although there
are other more complicated market-share models, for our purposes at

present it is sufficient to define explicitly the following three alternative
models.

Linear Model:

si = αi +
K∑

k=1

βk · Xki + εi (2.9)

Multiplicative Model:

si = exp(αi) ·
K∏

k=1

X
βk

ki · εi (2.10)

Exponential Model:

si = exp(αi +
K∑

k=1

βk · Xki + εi) (2.11)

The reader should note that the five models — MCI, MNL, linear,

multiplicative, and exponential — are closely related to each other. For
example, if we take the logarithm of both sides of either the multiplica-

tive or exponential model, we will have a linear model (linear in the

6Those models will be referred to raw-score MCI or MNL models in later chapters
of this book.
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parameters of the respective models, and not in variables). In other
words, the difference between the linear model and the multiplicative

and exponential models is merely one of the choice of transformations
for variables, that is, whether or not the logarithmic transformation is

applied to variables. (The specification for the error term may be differ-
ent in those three models, but this is a rather fine technical point which

will be addressed in Chapter 5.)

The most interesting relationship is, however, the one between the
MCI and multiplicative models, which is also duplicated between the

MNL and exponential models. The multiplicative model, of course, as-
sumes that market shares are a multiplicative function in explanatory

variables, while in the MCI model attractions are multiplicative in vari-
ables and market shares are computed by normalizing attractions (i.e.,
by making the sum of market shares to be equal to one). Obviously,

the key difference between the two is normalization. In this connection,
Naert and Bultez [1973] proposed the following important condition for

a market-share model.

1. Estimated market shares from the model are nonnegative.

2. The sum of estimated market shares is greater than zero and less
than or equal to one.

These conditions, commonly known as the logical-consistency require-

ments , are clearly not met by either the multiplicative or exponential
model, but are met by their respective normalized forms (i.e., MCI and

MNL), which must be a clear advantage for MCI and MNL models.
Note that the linear model does not satisfy the logical-consistency re-

quirements.

Why, then, are the MCI and MNL models not used more extensively?
The answer is that for a time both of those models were considered to
be intrinsically nonlinear models, requiring estimation schemes which

were expensive in analysts’ time and computer resources. This, however,
turned out to be a hasty judgment because those models may be changed

into a linear model (in the model parameters) by a simple transformation.
Take the MCI model, for example. First, take the logarithm of both

sides.

log si = αi +
K∑

k=1

βk log Xki + log εi
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− log{
m∑

j=1

(αj

K∏

k=1

Xβk

kj εj)}

If we sum the above equation over i (i = 1, 2, . . . , m) and divide by m,
we have

log s̃ = ᾱ +
K∑

k=1

βk log X̃k + log ε̃

− log{
m∑

j=1

(αj

K∏

k=1

Xβk

kj εj)}

where s̃, X̃k and ε̃ are the geometric means of si, Xki and εi, respectively.
Subtracting the above from the previous equation, we obtain

log

(
si

s̃

)
= α∗

i +
K∑

k=1

βk log

(
Xki

X̃k

)
+ ε∗i (2.12)

where:

α∗
i = (αi − ᾱ)

ε∗i = log(εi/ε̃).

The last equation is linear in model parameters α∗
i (i = 1, 2, . . . , m)

and βk (k = 1, 2, . . . , K). (In addition, there is another parameter σ2
ε ,

the variance of εi, to be estimated, but this parameter does not concern
us until Chapter 5.) This transformation will be called the log-centering

transformation hereafter.7 Note that, if we apply the log-centering trans-
formation to the MNL model, we obtain the following linear form.

log

(
si

s̃

)
= (αi − ᾱ) +

K∑

k=1

βk(Xki − X̄k) + (εi − ε̄)

where ᾱ, X̄k and ε̄ are the arithmetic means of αi, Xki and εi, respec-

tively. If we let α∗
i = (αi − ᾱ) and ε∗i = (εi − ε̄),

log

(
si

s̃

)
= α∗

i +
K∑

k=1

βk(Xki − X̄k) + ε∗i (2.13)

7The importance of this transformation is that we can estimate the parameters of
the original nonlinear model using linear-regression techniques.
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Both equations (2.12) and (2.13) are linear functions in model param-
eters, and hence called log-linear models. Recall that the multiplicative

and exponential models are also log-linear models. In other words, both
the MCI and MNL models are really special cases of log-linear models.

This point may be dramatically illustrated by the following comparisons
among the reduced forms of these models.8

Linear Model:

si = αi +
K∑

k=1

βkXki + εi

Multiplicative Model:

log si = αi +
K∑

k=1

βk log Xki + log εi

Exponential Model:

log si = αi +
K∑

k=1

βkXki + εi

MCI Model:

log

(
si

s̃

)
= α∗

i +
K∑

k=1

βk log

(
Xki

X̃k

)
+ ε∗i

MNL Model:

log

(
si

s̃

)
= α∗

i +
K∑

k=1

βk(Xki − X̄k) + ε∗i

In the above, the multiplicative and exponential models are shown in

the log-linear form. In all five equations the right-hand side is linear in
both αi (i = 1, 2, . . . , m) and βk (k = 1, 2, . . . , K). The left-hand side is

either a market share, the logarithm of a market share, or a log-centered
form of a market share. We will defer the discussion on the specifica-

tion of the error term ( εi, log εi and ε∗i ) till Chapter 5, but, since the
number of parameters in the five formulations are the same, one would

expect that those models would be just as accurate in predicting the

8The reduced forms of these models contain variables transformed so that they
made be directly submitted to a multiple-regression routine.
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dependent variable, namely, the left-hand side of each equation. Many
readers would then ask, “Which one makes the most accurate prediction

of market shares?” We report that many studies on predictive accuracy
of market-share models9 found the logical-consistency property of the

MCI and MNL models to produce only marginally better predictions
than the linear and multiplicative models. Why then all this fuss about

the MCI and MNL models? First, these test did not include the more
sophisticated versions of the models (see Chapter 3). And second, as was

stated in Chapter 1, we do not believe that predictive accuracy is the only
important criterion for judging the value of a model. We would rather

find the answer in the construct validity (i.e., intrinsic meaningfulness)
of those models, which is discussed in the next section.

2.6 Market-Share Elasticities

There is a common yet perplexing question which often arises on the part

of a product/brand manager, that is, “How much will our brand share
change if we change a marketing-mix variable by a certain amount?” The

answer to this question is obviously vital to those who develop short-
term marketing plans. After all, a brand manager must decide what

price to charge and how much the firm should spend in advertising, sales
promotion, trade allowances, etc. If the market responses to the changes

in marketing-mix variables were known, his/her job would become in
many ways immensely simpler.10 But this is one of the most difficult

pieces of information to obtain. It might be said that in a sense this
entire book is devoted to answering this difficult question.

Before we begin the discussion of how one predicts actual changes in
market shares, let us first look into a theoretical concept, market-share

elasticity , which will help us in measuring responses toward marketing-
mix variables. Simply stated, market-share elasticity is the ratio of the

relative change in a market share corresponding to a relative change in

9See Brodie, Roderick & Cornelius A. de Kluyver [1984], “Attraction Versus Lin-
ear and Multiplicative Market Share Models: An Empirical Evaluation,” Journal of

Marketing Research , 21 (May), 194–201. Ghosh, Avijit, Scott Neslin & Robert Shoe-
maker [1984], “A Comparison of Market Share Models and Estimation Procedures,”
Journal of Marketing Research , 21 (May), 202–10. Leeflang, Peter S. H. & Jan C.
Reuyl [1984], “On the Predictive Power of Market Share Attraction Models,” Journal

of Marketing Research , 21 (May) 211–15.
10The planning process would still require a substantial effort as is discussed in

Chapter 7.
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a marketing-mix variable. Expressed mathematically,

esi
=

∆si/si

∆Xki/Xki
=

∆si

∆Xki
·
Xki

si
(2.14)

where si is the market share, and Xki is the value of the kth marketing-

mix variable, for brand i. The symbol ∆ indicates a change in respective
variables. There is nothing conceptually difficult in market-share elas-

ticity. For example, if a brand’s share increased 10% corresponding to a
price reduction of 5%, the above equation would give a (price) elasticity

of −2; or if advertising expenditures were increased by 3% and as a result
the share increased by 1%, the (advertising) elasticity would be 0.33; and

so forth. We say that a brand’s market share is elastic with respect to
Xki if the (absolute) value of esi

is greater than one; inelastic if it is less
than one. It is also obvious that one may predict the changes in market

share from the knowledge of market-share elasticity. If esi
is 0.5, then we

know that a 10% increase in Xki will produce a 5% increase in market

share. In absolute terms, if the current share is 30% and the current
advertising expenditure (per period) is $1 million, a $100,000 increase in

advertising expenditure will result in a 1.5% increase in market share.
No one would deny that share elasticities would give one a clear per-

spective on the effect of marketing-mix variables on market shares. And
this is not just a theoretical concept, either. It is not far-fetched if we

said that, even if product/brand managers might not know the exact
magnitude of market response to the change in a marketing-mix vari-
able, they might have a reasonably good idea of market-share elasticities

for their product/brand, at least to the extent that market shares are
either elastic or inelastic to changes in marketing-mix variables. As will

be shown later, it is sometimes difficult for one to separate market-share
elasticities from the elasticities regarding the industry sales, but, even

so, experienced managers should have a fair grasp of market-share elas-
ticities. If a manager had no idea of whether a 5% change in price or

advertising expenditures would bring about a less than, equal to, or more
than 5% change in the market share, how could he/she even approach

to making short-term marketing plans?
No matter how experienced a manager is, however, he/she seldom

knows the exact magnitude of elasticities. One of the reasons for such

general states of uncertainty is that share elasticities change over time
depending on the share levels and the intensity of competitive activities

at that time. A manager might be able to get a reasonable idea of share
elasticities for his/her brand through experience if they were relatively
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stable over time, but the fact is that elasticities are not constant over
time. In general, the greater the share of a brand, the smaller one expects

the elasticities for its share to be. (The reader will find that this is the
basic reason for rejecting the Multiplicative model because it implies

constant elasticities.) It is obvious that, if a brand has a 95% share
of market, say, it cannot gain more than 5 percentage points even if

the magnitude of Xki is increased by more than 5%. Also one would
generally expect that a brand’s share changes will be affected by what

other brands do. If the competitors are relatively inactive, a brand may
gain a large share by lowering its price. But, if competitors retaliate

quickly, a brand may not gain any share at all for the same amount
of price reduction. To summarize, the necessity to take share levels
and competitive reactions into account puts the manager at a severe

disadvantage in knowing market-share elasticities accurately.

Market-share models discussed in the preceding section will help
managers by providing them with the estimates of elasticities. This,

we believe, is one of the most important contributions of those mod-
els. Stated differently, there is no way to estimate elasticities directly

from empirical data without adopting a model. This may not be intu-
itively clear because the formula for computing elasticities (2.14) appears

to contain only those terms which may be empirically measurable. But
note that the ∆si term in equation (2.14) must correspond to the change

in a specific marketing-mix variable, ∆Xki. Suppose that one observed
that a brand’s share increased 3% in a period. How does one know how

much of that increased share is due to price reduction? Or due to in-
creased advertising? To assess those so-called partial effects one needs a
market-share model.

The reader may be cautioned at this point that the estimated values
of elasticities vary from one model to the other, and hence one must
choose that model which fits the situation best. To illustrate, we will

derive the share elasticity with respect to Xki for the simplest version
of each model. For that purpose, however, one needs another concept of

share elasticity which is slightly different from the one defined by (2.14).
Technically, (2.14) is called the arc elasticity . This is because both ∆si

and ∆Xki span a range over the market-response curve which gives the
relationship between market shares and marketing-mix variables. The

other elasticity formula is called the point elasticity and takes the follow-
ing form.

esi
=

∂si

∂Xki
·
Xki

si
. (2.15)
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Note that the only difference between the two formulas is that (∆si/∆Xki)
in equation (2.14) is replaced by (∂si/∂Xki) in (2.15). Formula (2.15)

utilizes the slope of the market-response curve at a specific value of Xki.
The reason for using the point-elasticity formula than the arc formula is

that the former gives much simpler expressions of share elasticity. We
may add that (2.15) is a close approximation of (2.14) for a small value of

∆Xki, that is, when the change in Xki is very small. The point elasticity
for each model is given below. For convenient formulas for computing

point elasticities see Appendix 2.9.1.

Linear Model:

esi
= βkXki/si

Multiplicative Model:

esi
= βk

Exponential Model:

esi
= βkXki

MCI Model:

esi
= βk(1 − si)

MNL Model:

esi
= βk(1− si)Xki

Though the five market-share models are similar in the sense that
they are either linear or log-linear models, the share elasticities implied

from the models are quite different. One may wish to disqualify some
models on the basis of those expressions on some a priori grounds. In

the following we will only present verbal discussions, but the interested
reader is referred to a more mathematical treatment of the properties of

market-share elasticities given in Appendix 2.9.2.

First, one would expect that a brand’s share elasticity approaches

zero as the share for that brand approaches one. The Multiplicative
model implies that share elasticity is constant regardless of the share

level, and therefore seems rather inappropriate as a market-share model.

Second, it is generally accepted that it becomes harder to gain mar-
ket shares as a firm increases its marketing effort. In other words, one

would expect market-share elasticity to approach zero as Xki goes to
infinity (or minus infinity depending on the variable in question). But
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the Exponential model implies an opposite: share elasticity may be in-
creased indefinitely as the value of Xki increases. This is an uncomfort-

able situation, especially if variable Xki is a promotional variable (such
as advertising expenditures, number of salesmen, etc.). In addition, the

Exponential model has the same problem as the Multiplicative model:
for a fixed value of Xki, esi

is constant for all levels of si.

Note that the elasticity expression for the Linear model reflects that
share elasticity declines as the share increases, but, when the share ap-
proaches one, the elasticity does not approach zero. In fact, share elas-

ticity approaches 1 as Xki increases to infinity (or minus infinity, as the
case may be). Thus the Linear model produces a highly unreasonable

share-elasticity expression.

Considering what we expect from share elasticities, one may conclude

that the Linear, Multiplicative, and Exponential models are not proper
market-share models for use in marketing decision making. This leaves
us the MCI and MNL models as feasible alternatives. Figure 2.1 shows

the change in share elasticity over the positive range of Xki values.

Figure 2.1: Share Elasticities for MCI and MNL Models

The share is assumed to increase as Xki increases over the range.
Accounting for this share increase, the share elasticity for the MCI model

monotonically declines as Xki increases (Figure 2.1 (a)), while that for
the MNL model increases to a point and then declines.

The reader will ask which expression is a better one for share elas-

ticity. The answer is, “It depends on variable Xki.” The relevant issue
here is how share elasticity should behave for low values of the variable.

If Xki is product price, for example, it is more likely that share elasticity
is fairly large even when price is near zero. Hence, one would be inclined
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to use the MCI model for price. On the other hand, if the variable is
advertising expenditure, it is not unreasonable to assume that, at an ex-

tremely low level of expenditure, advertising is not very effective. (This
is to say that there is a threshold effect for advertising.) This assump-

tion, of course, leads to the adoption of the MNL model for advertising
expenditure. Indeed, it is the authors’ position that the choice between

the MCI and MNL models is not one or the other; both models may
be mixed in a single formulation for market shares. The reader may

recall that a general MCI (attraction) model of the following type was
presented in Chapter 1.

General MCI (Attraction) Model:

Ai =
K∏

k=1

fk(Xki)
βk (2.16)

si =
Ai∑m

j=1 Aj

where fk is a monotone transformation of Xki. It is obvious that, if

one chooses an identity transformation for k (that is, fk(Xki) = Xki),
(2.16) becomes the MCI model; if fk is an exponential function (that is,

fk(Xki) = exp(Xki)), then (2.16) becomes the MNL model. But there
is no reason for one to have to choose either the identity or exponential

transformation for all the fk’s in (2.16). Depending on the nature of vari-
able Xk, one should be free to choose either the identity or exponential

transformation (or any other appropriate monotone transformation, for
that matter). This is why in (2.16) fk has subscript k. For the remainder

of this book, we will use a mixture of MCI and MNL models.

2.7 Sales-Volume Elasticities

The reader is perhaps convinced by now that market-share elasticities
play a significant role in market-share analysis, but we must add that

they are not the only important concept in marketing planning. It
may be superfluous to say that the product/brand manager is interested
not in forecasting market-share changes themselves, but in forecasting

the changes in sales volume of the firm’s product corresponding to the
changes in marketing-mix variables. For this latter purpose, knowing

share elasticities is not enough. Since a brand’s sales volume is a prod-
uct of its market share and the relevant industry sales, one would also
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need information on how much industry sales change due to the firm’s
marketing activities.

There is a rather interesting relationship between the share, industry-
sales, and sales-volume elasticities for a firm. One may define point sales

elasticity in the manner analogous to (2.15).

eQi
=

∂Qi

∂Xki
·
Xki

Qi
(2.17)

where Qi is the sales volume (in units sold) for firm i. Similarly, point
industry-sales elasticity may be defined as follows.

eQ =
∂Q

∂Xki
·
Xki

Q
(2.18)

where Q is the sales volume for the entire industry. It is well known that
the following simple relationship exists among esi

, eQi
, and eQ.11

eQi
= esi

+ eQ . (2.19)

This equation shows that sales elasticity for firm i is merely the sum of
the firm’s share elasticity and industry-sales elasticity.12 For example,

if share elasticity is 0.6 and industry-sales elasticity is 0.1, the sales
elasticity is 0.7. In other words, if a firm increased a marketing-mix

variable by 10%, say, and as a result increased its share by 6% and at
the same time succeeded in expanding the industry sales by 1%, then its
sales volume should increase by approximately 7%.13 Equation (2.19)

combines the essential elements of interbrand competition. In order to
expand a firm’s brand sales, one will have to increase either industry

sales or the market share for the brand, or both. But one would expect
that in many cases the industry sales will be rather inelastic to a single

firm’s marketing activities. If this were indeed the case, brand sales could

11Lambin, Naert & Bultez [1975], “Optimal Marketing Behavior in Oligopoly,”
European Economic Review , 6, 105-28.

12This assumes no systematic competitive reactions. This assumption is relaxed in
section 6.3.

13The numerical result is approximate because equation (2.19) holds for point elas-
ticities only. If the change in Xki is relatively large as in this example, the relationship
should be expressed by arc elasticities as follows:

eQi
=

∆Qi

∆Xki

·
Xki

Qi

= esi
(1 +

∆Q

Q
) + eQ .

When ∆Q

Q
is relatively small, eQi

≈ esi
+ eQ as in the case of point elasticities.
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be expanded only if the firm’s share could be increased. Suppose that
esi

= 0.6 and eQ = 0.1. In order to increase the brand sales by 10%, the

market share will have to be increased by more than 8.5% (10×0.6/0.7).
On the other hand, if industry sales were reasonably responsive to a

firm’s marketing mix, the increase in brand sales could be achieved with
relatively small increase in market share. If esi

= 0.6 and eQ = 0.3, say,

a 6.7% (10 × 0.6/0.9) share increase results in a 10% increase in brand
sales.

To summarize, when industry-sales elasticities are near zero, it is

clear that firms in an industry will be fighting for a share of a fixed
pie. The reliance on market-share increases in improving a firm’s sales

will undoubtedly leads to a more intense competition. If industry-sales
elasticities are reasonably large, firms will not have to be too sensitive

about taking shares from others (or others taking one’s share), resulting
in more complacent competitive relationships among firms. Thus the

knowledge of industry-sales elasticities is helpful to marketing managers
in assessing competitive pressures existing in an industry. We will turn to

the estimation of industry-sales elasticities in Chapter 5 and the effects
on brand planning are discussed in Chapter 7.

2.8 *Market Shares and Choice Probabilities

So far we have chosen to treat market shares as an aggregate quantity,
namely, the ratio of a firm’s (brand) sales to the relevant industry sales.

But, since aggregate sales are composites of many purchases made by
individual buyers (consumers and industrial buyers), market-share fig-

ures must be related to individual buyers’ choices of various brands.
In fact, one frequently encounters measures of market shares which are
based on data obtained from individual buyers. The market-share figures

computed from the so-called consumer-diary panels or optical-scanner
panels14 are prime examples of such individual-based market-share mea-

sures. But such individual-based market-share measures are estimates
of actual market shares, and, if one had actual share figures, why should

one bother with those measures? In this section we will look at the rela-
tionships between market shares and choices made by individual buyers

and examine the importance of individual-based market-share data.

In analyzing the relationships between market shares and individual

14These are consumer panels whose purchase records are maintained by utilizing
optical scanners located at selected retail stores.
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choice probabilities, we will have to consider the variability of two factors
— choice probabilities and purchase frequency for individual buyers —

over the population of buyers in the market. Let us first define those
two concepts.

Suppose that each buyer purchases a number of units of the product
per period. We will assume that the purchase frequency (i.e., the number
of purchases per period) by an individual buyer is a random variable

which has a statistical distribution. We shall call this distribution an
individual purchase-frequency distribution, since it is defined for each

buyer in the market. The specific form of this distribution does not
concern us here except that it has its mean (mean purchase frequency).

Let’s assume, not unreasonably, that a buyer does not always pur-
chase the same brand from a set of alternative brands (this is the rel-
evant industry in our previous definition). In addition, it is assumed

that a buyer’s choice of a brand at one purchase occasion is made in-
dependently from his/her previous purchase and the buyer’s selection

is governed by probabilities specific to each brand.15 The set of proba-
bilities for alternative brands in the industry is called individual choice

probabilities .

In our view, whether or not the buyer’s behavior is truly proba-
bilistic or deterministic is not an issue here. A buyer’s choice behavior

may be totally deterministic, but the environmental conditions surround-
ing purchase occasions may be such that they involve probabilistic ele-

ments which, from the viewpoint of an outside observer, make the buyers’
choices appear probabilistic.

We also posit that the attractio

ns of alternative brands affect choice probabilities. This is to be con-
sistent with our position that brand attractions are the determinants of

market shares. We refer the reader to Appendix 2.9.3 for how individ-
ual choice probabilities are determined from attractions of alternative
brands.

We distinguish four cases regarding the homogeneity (or heterogene-
ity) of the buyer population with respect to individual choice probabilities

and purchase frequencies .

Case 1: Homogeneous Purchase Frequencies and Choice
Probabilities

If mean individual purchase frequencies are equal for all buyers and

the brand selection of every buyer in the market is governed by the same

15This is to say, each buyer’s brand selection in a period follows a Bernoulli process.
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set of choice probabilities, it is rather obvious that the market share of
a brand will be approximately equal to the choice probability for the

brand. (Actually, it is the expected value of the market share of a brand
which will be equal to the choice probability for the brand.) In this case

market shares may be interpreted as individual choice probabilities with-
out much difficulty. For example, if the market share for a brand is 0.3,

one may say that each buyer chooses this brand with a 0.3 probability.
Case 2: Homogeneous Purchase Frequencies and Heteroge-

neous Choice Probabilities

The interpretation of market shares will have to be changed a little if
each buyer has a different set of choice probability values for alternative

brands. We still assume that mean purchase frequencies are equal for all
buyers in the market. Under those assumptions it is easy to show that
the expected value of a brand’s market share is equal to the (population)

average of choice probabilities for that brand. In other words, a market
share of 0.3 may be interpreted that the average of choice probabilities

across the buyer population is 0.3.

Case 3: Heterogeneous Purchase Frequencies and Homoge-
neous Choice Probabilities

This is the case where, while a common set of choice probabilities is
shared by all buyers, mean purchase frequencies vary over buyers and

have a statistical distribution over the buyer population. In this case
the expected value of a brand’s market share is still equal to its choice

probability.
Case 4: Heterogeneous Purchase Frequencies and Choice

Probabilities

In this case both choice probabilities and purchase frequencies are
assumed to be variable over the buyer population. We need to distinguish
further two cases within this.

(a) Uncorrelated Case: choice probabilities and purchase frequencies

are uncorrelated (i.e., independently distributed) over the buyer popu-
lation.

(b) Correlated Case: choice probabilities and purchase frequencies
are correlated over the buyer population.

Let’s first look at the uncorrelated case. If purchase frequencies and
choice probabilities are uncorrelated, the expected value of market shares

are, as is shown later, still equal to population averages of choice proba-
bilities (as in the case of homogeneous purchase frequencies). Turning to

the correlated case, one finds that market shares are no longer directly
related to choice probabilities. This is perhaps more realistic for most
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products, since one often hears that so-called heavy users and light users
exhibit remarkably different purchase behavior. Heavy users are said to

be more discriminating in taste, more price conscious, and tend to pur-
chase family-size or economy packages, etc. It is not surprising, then, to

find heavy users preferring some brands or brand/size combinations to
those preferred by light users. If there were differences in the value of

choice probability for a brand between heavy and light users, individual
purchase frequencies and choice probabilities would be correlated and

the market share for the brand will be biased toward the choice proba-
bility values for heavy users simply because they purchase more units of

the brand. Thus market shares and choice probabilities generally do not
coincide in this case. Table 2.3 illustrates those points.

Table 2.3: Effect of Correlation Between Purchase Frequencies and
Choice Probabilities

(a) Uncorrelated Case

Expected Number
Purchase Choice Probabilities of Purchases

Buyer Frequency Brand 1 Brand 2 Brand 1 Brand 2

1 1 0.2 0.8 0.2 0.8
2 3 0.2 0.8 0.6 2.4

3 2 0.8 0.2 1.6 0.4

Average 2 0.4 0.6 0.8 1.2

Market Share 0.4 0.6

(b) Correlated Case

Expected Number
Purchase Choice Probabilities of Purchases

Buyer Frequency Brand 1 Brand 2 Brand 1 Brand 2

1 1 0.2 0.8 0.2 0.8
2 2 0.2 0.8 0.4 1.6

3 3 0.8 0.2 2.4 0.6

Average 2 0.4 0.6 1.0 1.0

Market Share 0.5 0.5

Table 2.3 (a) shows the case where purchase frequencies and choice
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probabilities are uncorrelated. In this case the expected market shares
are equal to the averages of choice probabilities. In Table 2.3 (b) there

is a moderate degree of correlation between purchase frequencies and
choice probabilities, as heavy buyer 3 prefers brand 1 while light buyers

1 and 2 prefer brand 2. In this case market share for brand 1 is greater
than the average of choice probability for the brand. The results above

may be stated more formally as follows.

The expected value of unit sales for brand i is obtained by averaging

(over the buyer population) individual purchase frequencies multiplied
by the individual’s choice probability for the brand. Hence the expected

value of market share for brand i is given by:

Market Share i =
Average Number of Units Purchased for Brand i

Average Purchase Frequency (for All Brands)

or

E(si) =
1

µ

∫ ∞

0

∫ 1

0
µπig(µ, πi)dπidµ (2.20)

where:

E(si) = the expected value of market share for brand i

µ = the mean purchase frequency per period (per individual)

µ = the population mean of µ

πi = the individual choice probability for brand i

g(µ, πi) = the joint density function for µ and πi.

Equation (2.20) shows that the expected value of market share for brand
i is a weighted average of choice probabilities (weights are individual

mean purchase frequencies) divided by average mean purchase frequency
µ̄. From (2.20) we directly obtain the following result.

E(si) = π̄i + cov(µ, πi)/µ̄

where:

π̄i = the population mean of πi

cov(µ, πi) = the covariance of µ and πi.
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This is because, by definition, cov(µ, πi) = µ̄E(si) − µ̄π̄i. This equation
shows that in general E(si) is not equal to π̄i. Since cov(µ, πi) may

be positive or negative, one cannot say if market shares are greater or
smaller than population mean of choice probabilities. But if µ and πi

are positively correlated, E(si) is greater than π̄i. If the correlation is
negative, E(si) is less than π̄i. Note also that, if cov(µ, πi) = 0 (that is, if

there is no correlation between the market share and choice probability),
then the expected market share and the average choice probability are

equal. In other words, in the uncorrelated case the expected value of a
brand’s market share is equal to its average choice probability (π̄i). The

foregoing results are summarized in Table 2.4.

Table 2.4: Relations Between Market Shares and Choice Probabilities
Purchase Frequencies

Choice Probabilities Homogeneous Heterogeneous

Case 1: Case 3:

Homogeneous E(si) = πi E(si) = πi

Case 2: Case 4 (a) Uncorrelated:
Heterogeneous E(si) = π̄i E(si) = π̄i

Case 4 (b) Correlated:
E(si) = π̄i + cov(µ, πi)/µ̄

It is apparent from the table that the only case where there is no cor-

respondence between market shares and choice probabilities is Case 4 (b).
This fact might tempt one to look at this case as an exception or anomaly,

but this is probably the most prevalent condition in the market. A practi-
cal implication of the preponderance of Case 4 (b) is that, for the purpose

of market-share forecasts, it is not sufficient for one to be able to predict
the choice behavior of individuals accurately; rather it becomes neces-

sary for one to be able to predict choice probabilities for each different
level of purchase frequencies.

Of course, the situation cannot be changed by merely assuming that
µ and πi are uncorrelated over the buyer population (Case 4 (a)). Since
µ and πi are arithmetically related, that is, πi = µi/µ where µi is the

expected number of units of brand i purchased by an individual, and∑m
i=1 µi = µ where m is the number of alternative brands in the indus-

try, the assumption that cov(µ, πi) = 0 (for all i) implies a very restrictive
form of joint distribution for µ and πi. Indeed, it may be shown that µ
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is distributed as a Gamma function and the πi’s are jointly distributed
as a Dirichlet distribution. No other distributional assumption will give

cov(µ, πi) = 0. See Appendix 2.9.4 for the proof of this result. The
reader will find that the assumption that the processes which generate

individual purchase frequencies are independent of the processes which
determine individual choice probabilities is very common in modeling

consumer choice behavior. But note that this practice is equivalent to
assuming no correlation between µ and πi and hence should be made

only in limited circumstances where those restrictive distributional as-
sumptions are justified.

What does all this argument about the relationship between purchase
frequencies and choice probabilities suggest to analysts and marketing
managers? If the correlation between purchase frequencies and choice

probabilities are suspect, it is clearly advisable to segment the market
in terms of purchase frequencies and analyze each segment separately.

One may discover that marketing instruments have different effects on
different segments and may be able to allocate marketing resources more

efficiently. Also forecasting of brand sales and market shares will be-
come more accurate if market shares are forecast for each segment and

weighted by the mean purchase frequencies for the segments to obtain
the estimate of overall market shares. Segmentation analysis of this type,

however, requires more refined data than usual aggregate market share
data, such as consumer-diary or scanner-panel data. Individual-based
market-share estimates obtained from such data sets may become in-

creasingly important if the data are accompanied by measures of the
individual buyers’ characteristics and allow the analyst to look into how

buyer profiles are related to purchase frequencies. We will deal with the
issues related to market-share data more extensively in Chapter 4.

2.9 Appendices for Chapter 2

2.9.1 *Calculus of Market-Share Elasticities

The point elasticities of market share si with respect to a marketing
variable Xkj are given by

esi.j =
∂si/si

∂Xkj/Xkj
=

∂si

∂Xkj
·
Xkj

si
(2.21)

The calculation of elasticities may be rather cumbersome for specific
market-share models. In this appendix several formulas which are useful
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in calculating market-share elasticities are derived. In the following ey.x

indicates the elasticity of variable y with respect to variable x.

Chain Rule for a Compound Function:

If Y = f(X) and Z = g(Y ), then

ez.x =
dZ

Z
·

X

dX
=

dZ

Z
·

Y

dY
·
dY

Y
·

X

dX
= ez.yey.x

Elasticity for a Sum of Variables:

If W = Y + Z, then

ew.x = dW
dX · X

W =
(

dY
dX + dZ

dX

)
· X

W

= dY
dX · X

Y · Y
W + dZ

dX · X
Z · Z

W

= ey.x
Y
W + ez.x

Z
W

Elasticity for a Product of Variables:

If W = Y · Z, then

ew.x = dW
dX · X

W =
(

dY
dX Z + dZ

dX Y
)
· X

W

= dY
dX · X

Y + dZ
dX · X

Z

= ey.x + ez.x

Elasticity for an Inverse of a Variable:

If Y = 1/Z, then

ey.x = dY
dX · X

Y = d
dX Z−1 · X

Z−1

= −Z−2 dZ
dX XZ = − dZ

dX · X
Z = −ez.x

2.9.2 *Properties of Market-Share Elasticities

Market-share elasticities have the following properties.

1. Since Qi = Q · si, we readily see that eQi.x = eQ.x + esi.x, from the

elasticity formula for a product of variables in Appendix 2.9.1.

2. If si is an increasing function in X , esi.x → 0 as si → 1. This is
because, as si → 1, Qi → Q and therefore eQi.x → eQ.x in (1).
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3. If si is a strictly increasing function in X , esi.x → 0 as X → ∞.
This is derived from (2), since as X → ∞, si → 1. If si is an

increasing function in X but approaches a constant (< 1) as X →
∞, then esi.x → 0 (since dsi/dX → 0 ).

Not all market-share models satisfy the above three properties of
market-share elasticities. Compare the following five models and the

corresponding elasticities with respect to variable X .

Linear Model:

esi
= βX/si

Multiplicative Model:

esi
= β

Exponential Model:

esi
= βX

MCI Model:

esi
= β(1− si)

MNL Model:

esi
= β(1 − si)X

If β is positive, it is clear that neither the linear, the multiplicative,

nor the exponential model satisfies property (2) and (3). Only the MCI
and MNL models satisfy all properties. This is one of the basic justifi-
cations for our choice of the latter models for market-share analysis.

2.9.3 *Individual Choice Probabilities

We have not discussed how individual choice probabilities are deter-
mined. The focus of this appendix is to relate individual choice prob-

abilities to attractions of alternative brands. We can of course assume
that the choice probability for a brand is proportional to its attraction,
and obtain a result similar to Kotler’s fundamental theorem discussed in

section 2.3. But there are other more axiomatic approaches to deriving
choice probabilities, and here we will be dealing with two basic models

which are closely related to each other. It may be added that the terms
attraction and utility will be used interchangeably in this appendix.
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*Constant-Utility Models

The simplest model for choice probabilities is the constant-utility model

which is also called the Luce model or Bradley-Terry-Luce model. Its
basic assumption (or axiom) may be stated as follows.

Axiom 1 Let an object, x, be an element of the choice set (i.e., set

of choice alternatives), C, and also of a subset of C, S (i.e., S ⊆ C).
The probability that x is chosen from C is equal to the product of the

probability that x is chosen from S and the probability that (an element
of) S is chosen from C.

Luce calls this assumption the individual choice axiom, which may

be expressed mathematically as:

Prob(x | C) = Prob(x | S)Prob(S | C)

where Prob(x | C) is read “the probability that x is chosen from C.”

This axiom for choice probabilities leads to results similar to that of

the Market-Share Theorem for market shares. If we let

ux =
Prob(x | C)

Prob(z | C)

for an arbitrary object in C, then for two objects x and y in C

ux

uy
=

Prob(x | C)

Prob(y | C)

and this ratio does not change with the choice of z. Also, since

∑

y∈C

Prob(y | C) = Prob(x | C)
∑

y∈C

uy

ux
= 1

we have

Prob(x | C) = ux/
∑

y∈C

uy .

The quantity ux is called the constant utility of object x, and presumably

determined for each individual as a function of marketing activities for
x.
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This model formed a basis of various models of individual choice
behavior,16 and was also implicitly adopted for many market-share mod-

els. But the model exhibits the so-called Independence from Irrelevant
Alternatives (IIA) property which produces some quite counterintuitive

results. From the axiom we have

Prob(x | C)

Prob(y | C)
=

Prob(x | S)

Prob(y | S)

for any subset of S ⊆ C which contain both x and y. Since this relation-

ship must hold for set {x, y},

ux

uy
=

Prob(x | {x, y})

Prob(y | {x, y})
.

This ratio is independent of the choice of z. Since z is supposedly irrel-
evant to the odds of choosing x over y, this has been called the Inde-

pendence of Irrelevant Alternatives (IIA) property. The classic counter
examples are from Debreu.17 Although Debreu proposed a record-buying

situation, the issues are more clearly illustrated using a transporta-
tion-choice example. Suppose a person is indifferent between riding

on a red bus (RB) versus a blue bus (BB) if offered just these two
alternatives, but prefers riding a taxi (T ) four-to-one over a red bus ,

if offered this pair or four-to-one over a blue bus , if offered that pair
of alternatives. The choice axiom would summarize this case by not-
ing that Prob(RB | {RB, BB}) = .5, Prob(T | {T, RB}) = .8, and

Prob(T | {T, BB}) = .8. While it seems clear that the probability of
choosing a taxi shouldn’t decrease if it is offered in a choice set along

with both a red bus and a blue bus (i.e., Prob(T | {RB, BB, T}) should
still be .8), the choice axiom insists that Prob(T | {RB, BB, T}) = .67

and Prob(RB | {RB, BB, T}) = .16. The choice axiom forces this so
that the ratio of the utility of RB to T is constant regardless of the choice

set in which they are offered.

16Huff, David L. [1962], Determination of Intraurban Retail Trade Areas, Los An-
geles: Real Estate Research Program, University of California, Los Angeles. Haines,
George H., Jr. Leonard S. Simon & Marcus Alexis [1972], “Maximum Likelihood
Estimation of Central-City Food Trading Areas,” Journal of Marketing Research , 9
(May), 154–59. Nakanishi, Masao & Lee G. Cooper [1974], “Parameter Estimation for
a Multiplicative Competitive Interaction Model — Least Squares Approach,” Journal

of Marketing Research , 11 (August), 303–11.
17Debreu, Gerard [1960], “Review of R. D. Luce’s Individual Choice Behavior: A

Theoretical Analysis , American Economic Review , 50 (1), 186–8.
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The concept of constant utility and the IIA property are really two
sides of the same coin. If we think of utility is a inherent property of an

object which doesn’t change regardless of the context in which a choice
is made, we will be trapped by the IIA property into counterintuitive

positions.

There are two ways out of this problem. First, we can explicitly con-
sider how the context in which choices are made affect the attraction of

the alternatives. This is the path we follow in Chapter 3 when discussing
the distinctiveness of marketing efforts (see section 3.8). Second, we can
consider utility to be a random variable, rather than a constant. This is

the topic of the next section.

*Random-Utility Models

A broad group of choice models is based on the assumption that utili-

ties which an individual feels toward various objects (in our application,
brands in an industry) at each purchase occasion are random variables,
and the individual selects that brand which happens to have the largest

utility value among the alternatives at that occasion. This model, known
as a random-utility model , is defined as follows. Let U1, U2, . . . , Um be

the utilities for alternative brands where m is the number of brands in
the choice set, C,18 and g(U1, U2, . . . , Um) be the joint density function

for them. The probability that brand i is chosen at a purchase occasion
is given by

Prob(i | C) = Prob(Ui ≥ Uj for all j ∈ C) .

In order to evaluate this probability, however, one must evaluate an
integral function. For three brands, the probability that brand 1 is chosen

is given by the following integral.

Prob(1 | C) =

∫ ∞

−∞

∫ u1

−∞

∫ u1

−∞
g(u1, u2, u3)du3du2du1 (2.22)

Similarly, Prob(2 | C) and Prob(3 | C) are given by suitably changing
the upper limits of integration. Integral (2.22) may be defined for any

number of choice objects (e.g., brands).

A large number of variants of random utility models may be created
from this definition by selecting different specifications for g. However,

18C is the set of all competing brands in the industry.
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the usefulness of random utility models is limited because, unless the
density function g is so very special as to give an analytical solution,

the evaluation of this integral will in general require numerical integra-
tion. For example, if g is a joint normal density (known as a probit or

multivariate-probit model), there is no analytical (or closed-form) solu-
tion to this integral. The probit model is a reasonable model for many

applications, but its use has been hampered by the fact that the evalu-
ation of (2.22) for a large number of objects involves tedious numerical

integration.
There is one exception, however, to the need for cumbersome numer-

ical integration of (2.22). McFadden19 showed that, if the joint distri-
bution for random utilities {U1, U2, . . . , Um} is a so-called multivariate
extreme-value distribution of type I, then integral (2.22) has a closed-form

solution. A multivariate extreme-value distribution takes the following
form.

G(u1, u2, . . . , um) =
m∏

i=1

exp[− exp(αi − ui)]

where αi (i = 1, 2, . . . , m) are parameters. This distribution is conve-

nient because the maximum value among a sample of random utilities
{u1, u2, . . . , um} from this distribution is also distributed as an extreme-

value distribution of the following form.

F (umax) = exp[− exp(−umax)
m∑

i=1

exp(αi)]

where umax is a realization of a new random variable,

Umax = max(U1, U2, . . . , Um) .

Using this property, the distribution function for random variable

Umax∗ i = max{Uj : for all j 6= i}

is given by

F (umax∗ i) = exp[− exp(−umax∗i)
m∑

j 6=i

exp(αj)] .

19McFadden, Daniel [1974], “Conditional Logit Analysis of Qualitative Choice Be-
havior.” In Paul Zarembka (editor), Frontiers in Econometrics , New York: Academic
Press, 105–42.
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Then the probability that brand i is chosen at a purchase occasion is
given by

Prob(i | C) = Prob(Ui > Umax∗i) (2.23)

=

∫ ∞

−∞

∫ ui

−∞
dG(ui)dF (umax∗ i)

=

∫ ∞

−∞
exp[− exp(αi − ui)] ·

exp(αi − ui) exp[− exp(ui)
m∑

j 6=i

exp(αj)]dui

= exp(αi)/
m∑

j=1

exp(αj) .

The reader will recall that, if we let the attraction of brand i, Ai, be
equal to exp(αi), this expression is similar to an MNL model. Indeed the

foregoing argument has been used to derive MNL models for individual
choice behavior. However, one may derive an expression similar to more
straightforward attraction models (2.6), if, instead of an extreme-value

distribution of type I, one chooses an extreme-value distribution of type
II, namely,

G(u1, u2, . . . , um) =
m∏

i=1

exp[−Aiu
−b
i ]

where Ai (i = 1, 2, . . . , m) are parameters. To show this, first note that

the distribution function for random variable

Umax∗ i = max{Uj : for all j 6= i}

is given by

F (umax∗ i) = exp[−u−b
max∗i

m∑

j 6=i

Aj] .

Using this,

Prob(i | C) = Prob(Ui > Umax∗ i) (2.24)

=

∫ ∞

−∞

∫ ui

−∞
dG(ui)dF (umax∗ i)

=

∫ ∞

−∞
exp[−Aiu

−b
i ](Aibu

−b−1
i ) exp[−u−b

i

m∑

j 6=i

Aj ]dui

= Ai/
m∑

j=1

Aj .
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This demonstrates the fact that MCI models as well as MNL models
are derivable if extreme-value distributions are assumed for the joint

distribution of random utilities.

Although both equations (2.24) and (2.25) are derived for individ-
ual choice probabilities, one may derive an attraction model for aggre-
gate market shares, if the definition of distribution functions is slightly

changed. Suppose that random utilities for alternative brands, U1, U2,
. . ., Um, are jointly distributed over the population of individual buyers,

rather than within an individual. Each individual has a set of realized
values for utilities, u1, u2, . . . , um, and will select that brand which has

the maximum utility value among m brands. Cast in this manner, the
problem is to find the proportion of buyers who will purchase brand i,

but equations (2.24) and (2.25) give precisely this proportion (that is,
market share) for two extreme-value functions. Thus McFadden’s argu-

ment may be used to give another justification for using an attraction
model.

Although random utility models in general do not have the IIA prop-
erty, it should be noted that some random utility do have it. Yellott20

proved that a random utility model is equivalent to a constant utility
model (and hence possesses the IIA property) if and only if the joint

distribution of random utilities follows a multivariate extreme-value dis-
tribution. The basic forms of MNL and MCI models happen to belong
to this special case. But we wish to emphasize that it is possible to con-

struct attraction-type models of probabilistic choice which do not have
the IIA property. We will discuss two such models — the fully extended

and distinctiveness models — in Chapter 3.

2.9.4 *Multivariate Independent Gamma Function

It was stated in section 2.8 that the condition that cov(µ, πi) = 0 occurs
for a very restricted case where µ is distributed as a Gamma function and

the πi’s are jointly distributed as a Dirichlet function. In this appendix
we will give a proof for this statement. Let µi be the expected number
of purchases of brand i by an individual. By definition µi = µπi (or

πi = µi/µ). We seek a joint distribution of µi (i = 1, 2, . . . , m), where m
is the number of alternative brands, for which µ and each µi/µ(= πi) are

mutually independent. But, since µ and its inverse are usually negatively

20Yellott, John I. [1977], “The Relationship between Luce’s Choice Axiom, Thur-
stone’s Theory of Comparative Judgment, and the Double Exponential Distribution,”
Journal of Mathematical Psychology, 15, 109–44.
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correlated, one would expects that µ and µi/µ will be correlated for most
random variables. This suggests that we are indeed looking for a rather

special distribution for the µi’s.
Lukacs21 showed that, for mutually independent nonnegative random

variables X1 and X2, if (X1 + X2) and X1/(X1 + X2) are mutually
independent, both X1 and X2 must be Gamma variates with a common

shape parameter (but not necessarily a common location parameter).
We will use this result to show the following propositions.

Proposition 1 If the µi’s (i = 1, 2, . . . , m) are mutually independent

Gamma variates with density function

g(µi) = exp(−µi/β)µαi−1
i /βαiΓ(αi)

then µ and the πi’s are independently distributed.

Proposition 2 If the µi’s are mutually independent nonnegative ran-

dom variables and µ and µi/µ(= πi) are independent, then the µi’s are
jointly distributed as multivariate (independent) Gamma function.

Proof 1 By the change-of-variable formula, the joint density of µ
and π1, π2, . . . , πm−1 is given by

g(µ, π1, π2, . . . , πm−1) = g(µ1, µ2, . . . , µm)J

= g(µ1, µ2, . . . , µm)µm−1

where J is the Jacobian determinant associated with the transformation
of the µi’s to µ and the πi’s. Hence

g(µ, π1, π2, . . . , πm−1) =
m∏

i=1

g(µi)µ
m−1

=
m∏

i=1

exp(−µi/β)µαi−1
i /βαiΓ(αi)µ

m−1

= [exp(−µ/β)µα.−1/βα.Γ(α.)] ·

[Γ(α.)
m∏

i=1

παi−1
i /Γ(αi)]

where

α. =
m∑

i=1

αi .

21Lukacs, E. [1965], “A Characterization of the Gamma Distribution,”Annals of

Mathematical Statistics , Vol. 26, 319-24.
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Thus g(µ, π1, π2, . . . , πm−1) can be factored into two parts: the first is
a Gamma density function for µ with parameters α. and β, and the

second is a Dirichlet density function for π1, π2, . . . , πm−1 (and πm =
1−π1−π2− . . .−πm−1) with parameters αi (i = 1, 2, . . . , m). Therefore

µ and π1, π2, . . . , πm are independent.
Proof 2 Let, for an arbitrary index j∗ (j∗ ∈ C), Mj∗ be the sum of

the µi’s except µj , i.e.,

Mj∗ =
m∑

j∗ 6=j

µj∗ = µ − µj .

By the assumption, µj and Mj∗ are independently distributed nonnega-
tive random variables and also µj and µj/µ = µj/(µj + Mj∗) are inde-

pendent. By Lukacs’ result µj and Mj∗ are both Gamma variates with
a common shape parameter. Since index j was chosen arbitrary, this

result applies for all j, that is, all µj’s are Gamma variates sharing a
common shape parameter. Q.E.D.

æ



Chapter 3

Describing Markets and

Competition

3.1 Market and Competitive Structure

In the preceding chapter we viewed competition among brands in an in-

dustry in the simplest possible way, that is, with the assumption that
every brand is directly competing against all other brands in the indus-

try. But competition in the actual market place may take more complex
patterns. It is not unusual to find some grouping of brands such that
within a group competition among its members are intense, but compe-

tition is not intense or even nonexistent between the groups.

Consider the toothpaste industry. Brands belonging to it may be

subdivided into at least three groups: family use, breath care, and tar
removers (for smokers). Each group emphasizes a different product at-

tribute: the first group emphasizing decay-preventive ingredients, the
second, breath fresheners, and the third, tar control, etc. The three
groups serve different segments of buyers, and therefore do not directly

compete with each other, although brands in a group tend to be highly
competitive in the sense that the action of one brand affects the market

shares of others.

Then why can’t we treat the three brand groups of the toothpaste
industry as three separate industries? It is because, at the retail level at

least, the shares of three groups are often observed to be interdependent.
A price deal for a brand in the family-use group, say, may affect the

demand of brands in other brand groups. The reason is not difficult
to find. Though three groups of toothpaste are used by different user

55
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groups, they are often bought by the same person in a family. A mild
degree of interdependencies among three groups makes it necessary to

treat them as a single industry.

Our purpose in this chapter is to create a framework that may be

used to describe the market and competitive structures existing in an
industry. By a market and competitive structure we mean the structure

of interdependencies among competitors in an industry, as expressed by
grouping patterns of brands. We could simply call such a pattern a

competitive structure, but a competitive structure may be a reflection of
the underlying pattern of buyer demand in the market. If it were found

that brand A directly competed with brand B but not with brand C, it
might be because the buyers perceive brand A and B as alternatives, but

not brand A and C. Since we mostly utilize aggregate market-share data
in determining grouping patterns of brands, we will not know if such

a conjecture is true or false. The choice of the cumbersome expression
market and competitive structures reflects our lack of information about
the underlying perception of buyers.

In this chapter we will examine various approaches for looking at and
modeling market and competitive structures among brands. Of partic-

ular interest are the phenomena: differential effectiveness of marketing
actions, asymmetry of competitive interactions, and variations between

market segments. We will also deal with two topics of considerable im-
portance — the distinctiveness of brands and time-series issues — related

to the description of market and competitive structures.

3.2 Asymmetries in Market and Competition

An even cursory observation of competitive interactions in the market

place reveals that some firms (brands) are capable of exerting inordi-
nately strong influence over the shaping of demand and competition,

while other firms (brands) are not. One often sees some price leaders
who can reduce their prices and obtain a large gain in market share,

seemingly oblivious to their competitors’ reactions. Other firms can cre-
ate strong buyer loyalties, albeit for only a short term, with splashy
promotional campaigns. It appears that such notable marketing clout

is not possessed by all firms in an industry and, interestingly, are not
the sole property of larger firms. There are fairly large firms in many

industries which have difficulties in increasing their shares, even if they
reduce prices below those of their price-aggressive competitors. Further-
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more, the impact of one competitor’s action may affect one rival or one
group of rivals more than another. For example, a price cut by Hewlett-

Packard in the personal computer market may disproportionately draw
more market share from Apple than from another major brand, say,

IBM.
The imparity in competitive interdependencies are perhaps more pro-

nounced in the retail trade. Retailers with experience know that which
brands they should use for loss-leaders (i.e., brands whose price is cut

to increase store traffic) and which brands to feature in newspapers for
the maximum effect. And they do not cut prices or feature arbitrarily,

either. Retailers seem to share pretty much the same opinion as to which
brands are candidates for loss-leaders or newspaper features.

Those observations illustrate both differential effectiveness of brands

and asymmetries in market and competitive structures. Differential effec-
tiveness among brands reflects that firms (brands) have different degrees

of effectiveness in carrying out their marketing activities. That such
differences exist in real markets is obvious, but differential effectiveness

alone does not create or reflect asymmetries. Asymmetries are reflected
in differential crosseffects among brands. Firms are, it appears, differen-

tially effective not only with respect to their own shares and sales, but
also with respect to their ability (that is, clout) to influence the shares

and sales of other brands. Furthermore, firms seem to differ in the degree
to which they are influenced by other brands’ actions (that is, vulnerabil-
ity). We will deal with those two aspects of competition in the following

sections.

3.3 Differential Effectiveness

We have already discussed this issue of differential effectiveness in Chap-

ter 2, and a solution at that time was to include some parameters in
market-share models to take account of the overall marketing effective-

ness of each brand. The reader will recall, in the now-familiar specifica-
tion of attraction models,

Ai = exp(αi + εi)
K∏

k=1

fk(Xki)
βk

si = Ai/
m∑

j=1

Aj
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where parameters αi (i = 1, 2, . . . , m) represent the marketing effective-
ness of respective brands.

The inclusion of the α’s in attraction models, however, does not fully
account for differential effectiveness among brands. The differential ef-

fectiveness may be specific to each marketing instrument, such as a brand
which has a particularly effective pricing policy or an effective advertising

campaign. The αi’s do not appear in the elasticity formulas for a partic-
ular marketing instrument, Xk (namely, esi

= βk(1−si) for MCI models

and esi
= βkXki(1 − si) for MNL models). The marketing-effectiveness

parameters may reflect differences in the brand franchise or brand loyalty.

Literally, they are the constant component of each brand’s attraction,
but they have nothing to do with elasticities. As a result, elasticity
formulas for simple attraction models do not reflect differential effective-

ness. If we are to insist that share elasticities must also reflect differential
effectiveness, those elasticity formulas will have to be modified.

If it is decided to modify market-share elasticities to account for
differential effectiveness, the reader will find that this may be achieved

in only one way, that is, by specifying parameters βk’s in such a manner
that each brand has a special parameter, βki, for variable Xk. The

attraction models will have to be respecified as follows.

Ai = exp(αi + εi)
K∏

k=1

fk(Xki)
βki (3.1)

si = Ai/
m∑

j=1

Aj

This is the differential-effects version of attraction models. This modifi-
cation does not change the basic structure of direct and cross elasticities

for attraction models. For example,
MCI Model:

esi
= βki(1 − si)

MNL Model:

esi
= βkiXki(1− si) .

As variable Xki increases, the elasticity decreases for MCI models, but

it increases and then decreases for MNL models. By expanding the pa-
rameterization of the model we are now able to capture brand-by-brand



3.4. DIFFERENTIAL CROSS ELASTICITIES 59

differences in market responsiveness to each element of the marketing
mix. If all brands are equally effective then βki = βkj = βk ∀ i, j, and

the elasticity expressions reduce to those for simple attraction models.

3.4 Differential Cross Elasticities

In the preceding chapters we presented elasticities as a key concept in
market-share analysis, but what do they tell us of the effects that a

firm may exert with its actions on the sales and shares of other firms
in the same industry? The share, sales, and industry-volume elasticities
described in Chapter 2 — known as direct elasticities — are not suffi-

cient, if the analyst is interested in knowing what effects other brands’
actions will have on his/her brand’s share, or what effects his/her actions

will have on other brands’ shares. For the purpose of analyzing differ-
ential crosseffects among brands we will need a new concept — cross

elasticities. Let us give a more precise definition to this new concept.

Suppose that brand j changed variable Xkj by a small amount ∆Xkj.
The cross elasticity of brand i’s (i 6= j) share with respect to variable
Xkj may be verbally expressed as “the ratio of the proportion of change

in market share for brand i corresponding to the proportion of change
in variable Xk for brand j,” and is defined as follows.

esi.j =
∆si/si

∆Xkj/Xkj
=

∆si

∆Xkj

Xkj

si
(3.2)

Note that esi.j has two subscripts: the first indicates the brand which

is influenced and the second, the brand which influences. This is an arc
cross-elasticity formula and the point cross elasticity is defined as:1

esi.j =
∂si/si

∂Xkj/Xkj
=

∂si

∂Xkj

Xkj

si
. (3.3)

We now turn to the forms of point elasticities for specific market-

share models. Point cross elasticities for differential-effects attraction
models take the following forms.

MCI Model:

esi.j = −βkjsj

1As in the case of direct elasticities, the above formula is for variable Xkj , but for
the sake of simplicity no superscript or subscript k will be attached to esi.j . It will
be clear from the context which variable is being referenced.
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MNL Model:
esi.j = −βkjXkjsj

It may be added that, for simple-effects attraction models, βkj in the
above formulas are replaced by a common parameter βk.

Let us consider what the above formulas imply. For the raw-score
versions of both MCI and MNL models cross elasticities with respect

to variable Xkj are constant for any brand i (i 6= j). This means that
the relative changes of other brands’ shares (i.e.,∂si/si) caused by brand

j’s actions are the same for any brand, though actual changes in shares
(i.e., ∂si) are different from one brand to another, depending on the

current share level for each brand (i.e., si). A numerical example may
help to illustrate this point. Suppose that there are four brands and
their respective shares are 0.3, 0.1, 0.2 and 0.4. Assuming that an MCI

model is applicable and βk1 is 0.5, the value of cross elasticity for brand
i (i 6= 1) with respect to the change in Xk1 is given by

esi.1 = −0.5 × 0.3 = −0.15 .

If no other variables have been changed, a 10% increase in variable Xk1

will bring about a 1.5% reduction in any other brand’s share, i.e.,

∆si/si = esi.1 × (∆Xk1/Xk1) = −0.15× 0.1 = −0.015 .

If brand 2 has a 20% share of market, the actual loss of its share will be
by 0.3 percentage points, i.e.,

s2 = −0.015× 20% = −0.3% .

These calculations are summarized in Table 3.1.

Table 3.1: Numerical Example of Cross Elasticities for MCI Model

Relative Actual
Current Share Change Change New

Brand Share Elasticity in Share in Share Share

1 .3 0.35a 0.035 0.0105 .3105

2 .2 –0.15 –0.015 –0.0030 .1970
3 .1 –0.15 –0.015 –0.0015 .0985
4 .4 –0.15 –0.015 –0.0060 .3940

a. Direct elasticity is es1.1 = βk1(1 − s1).
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Though share cross elasticities are equal for brands 2, 3, and 4, the
actual change in a brand’s share varies, reflecting its current level. (The

sum of actual changes in shares is zero for all brands in the industry,
as it should be.) Note that the competitive positions of brands 2, 3,

and 4 relative to each other have not changed by the reduction in their
shares. In fact, the new share of any brand other than 1 may be simply

calculated by

New Share of Brand i = (1 − New Share of Brand 1) × Old Share of Brand i.

We may add that, for an MNL model, relative and actual changes in si

are a function of the current value of Xkj, but the value of esi.j for this

model is identical for any other brand i.
From those calculations one can see that simple attraction models

specify a rather peculiar pattern of competition in that the relative effects
of a brand’s actions on another brand’s share are identical for any brand
in the industry. This equality of cross elasticities implied by such simple

attraction models does not fit what we observe in the marketplace. There
are brands which seem to be nearly immune from other brands’ price

changes; some firms seem to be able to ignore promotional activities
of other brands with little loss of their shares, while others seem to be

greatly affected by such activities, and so forth. Examples of this kind
may be found in many industries. It is therefore desirable to introduce

in market-share models the inequality of cross elasticities, if we are to
analyze differential cross effects among brands. There are two ways to

attack this problem. On one hand, we could reflect the asymmetries
which might arise from the temporal distinctiveness of marketing efforts.
This is pursued in section 3.8. On the other hand, we could extend

the parameters of the attraction model to reflect asymmetries due to
systematic and stable cross-competitive effects . Fortunately, this can

be accomplished with relative ease within the framework of attraction
models as shown below.

Ai = exp(αi + εi)
K∏

k=1

m∏

j=1

fk(Xkj)
βkij (3.4)

si = Ai/
m∑

j=1

Aj

where βkij is the parameter for the cross-competitive effect of variable
Xkj on brand i.
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Equation (3.4) is called an attraction model with differential cross-
competitive effects or a fully extended attraction model to distinguish it

from a differential-effects attraction model (3.1). The most important
feature of the fully extended model is that the attraction for brand i

is now a function not only of the firm’s own actions (variables Xki’s,
k = 1, 2, . . . , m) but also of all other brands’ actions (variables Xkj’s,

k = 1, 2, . . . , K; j = 1, 2, . . . , m). The βkij’s for which i is different from
j are the cross-competitive effects parameters, which partly determine

cross elasticities. The βkij’s for which j equals i (i.e., βkii) are direct-
effects parameters and are equivalent to the βki’s in the differential-effects

model (3.1). This notation is cumbersome, but it is necessary to keep
track of who is influencing whom. Note that the fully extended model
has many more parameters (with m× 2×K βkij ’s and m αi’s) than the

original attraction model (with K + m parameters) and the differential-
effects model (with mK + m parameters). We will take up the issues

related to estimating βkij’s in Chapter 5.

3.5 Properties of Fully Extended Models

In order to see what market and competitive structures implied by the

fully extended model (3.4) , let us look at the direct and cross elasticities
for this model.

MCI Model:

esi.j = βkij −
m∑

h=1

shβkhj

MNL Model:

esi.j = (βkij −
m∑

h=1

shβkhj)Xkj

These formulas are common for both direct and cross elasticities; if
i is equal to j, the above formulas give direct elasticities for brand i,
otherwise they give cross elasticities.2 esi.j is the elasticity of market

share for brand i with respect to changes in marketing variable Xkj for

2The elasticity formulas may be more succinctly written in matrix notation.
MCI Model:

E = (I − JDs)B

MNL Model:
E = (I − JDs)BDX

where:
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brand j, and it is given by βkij minus the weighted average of βkhj ’s over
h, where the weights are the market shares of respective brands (sh).

Figure 3.1 illustrates the competitive pattern implied by the elasticity
formulas.

Figure 3.1: Cross Elasticities in the Fully Extended Model

Let’s assume that variable Xkj in this case is the price for brand j.
Then parameter βkij for which i is not equal to j tends to take a positive

value. In other words, when brand j reduces its price the share of brand
i tends to decrease. This effect of brand j’s price change on brand i’s

share is depicted as the direct effect in Figure 3.1. Note that the direct
effect is modified by the size of brand i’s share. When brand i’s share

is nearly one, brand i is little affected directly by the moves by brand
j.3 The influence of brand j’s price change is not limited to the direct

effect to brand i, however. When brand j reduces its price, its own share
should increase. Furthermore, the market shares of brand 1 through m

E = m × m matrix with elements {esi.j}

I = m × m identity matrix

J = m × m matrix of all 1’s

Ds = m × m diagonal matrix of market shares {s1, s2, . . . , sm}

B = m × m matrix with elements {βkij}

DX = m × m diagonal matrix of variables {Xk1, Xk2, . . . , Xkm}.

3This statement is true for the relative changes (∂si/si) in brand i’s share. In terms
of absolute sales volume, the impact of brand j’s price change may be substantial.
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(other than brand i and j) will also receive a negative effect, which in
turn should have a positive effect on brand i’s share. Indirect effects in

Figure 3.1 depict influences of those kinds.
In order to examine formally the points raised above, rewrite the

cross-elasticity formula for MCI models as follows.

esi.j = (1− si)βkij − sjβkjj −
m∑

h6=i,j

shβkhj .

The first term, of course, represents the direct effects. The second term

shows the indirect effects through brand j. The last term consists of
indirect effects through all other brands. If Xkj is brand j’s price, one

expects that βkjj < 0 and βkij > 0 (for i 6= j). Since the first and
last terms are expected to be positive and the second term negative,

the sign of esi.j is indeterminate, and dependent on the relative size of
(1 − si)βkij − sjβkjj and

∑m
h6=i,j shβkhj .

Consider the following special cases.
Case 1: All cross-elasticity parameters (βkij, i 6= j) are zero. In this

case, esi.j = −sjβkjj , This is the same as the cross-elasticity formula for

the differential-effects MCI models.
Case 2: All cross-elasticity parameters (βkij, i 6= j) are approxi-

mately equal. In this case,

m∑

h6=i,j

shβkhj ≈ (1 − si − sj)βkij .

Then

esi.j ≈ sj(βkij − βkjj) .

This suggests that esi.j has the same sign as βkij .
Case 3: βkij is nearly zero, but

m∑

h6=i,j

shβkhj > sjβkjj .

In this case esi.j may have a sign different from βkij.
Case 3 is an interesting situation because, in this case, it is possible

that brand i even gain a share when brand j reduces its price. For case
3 to occur brand j’s share should be relatively small, but the impact

of its actions on brands other than i must be large. (This brings to
our mind an image of an aggressive small brand j which is frequently
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engaged in guerilla price-wars.) In addition, brand i must be reasonably
isolated from the rest of the market, implying that it is a niche-er. This

case illustrates the richness of the description of market and competitive
structures offered by the fully extended attraction models.

It may be added that if i = j, we may write

esi.i = (1− si)βkii −
m∑

h6=i

shβkhi .

The first term represents the direct effect of Xki on brand i’s share;
the second term gives the sum of all indirect effects on brand i’s share
through influences on all other brands. This formula suggests a possibil-

ity that, even if the direct effect is negligible (e.g., βkii is small), direct
elasticity, esi.i, may be sizeable due to the combination of indirect effects.

In other words, a brand may be able to increase its share merely by re-
ducing other brands’ shares. The reader should note that simple-effects

or differential-effects attraction models do not allow such a possibility.
This is another indication of descriptive richness of the fully extended

attraction models.

To summarize, the fully extended (i.e., differential cross elasticity)
attraction models offer an enormous advantage over many market-share

models in that it is capable of describing the complexity of market and
competitive structures with relative ease. Since the simple-effects and

differential-effects models may be considered as the special cases of the
fully extended models,4 we will adopt the latter models as the basic

models of market shares in this book.

3.6 Determining Competitive Structures

Once cross-elasticity parameters are introduced in market-share models,

it becomes possible to specify market and competitive structures on the
basis of cross elasticities among brands. An example will serve to illus-

trate this concept. Suppose that the marketing variable in question is
price. One may estimate share elasticities with respect to price using

a differential cross-elasticities market-share model. Table 3.2 shows the
matrix of direct and cross elasticities among seven brands in a hypothet-
ical industry.

4In technical jargon, we say that the simple-effects and differential-effects models
are nested within the fully extended models.
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Table 3.2: Direct and Cross Elasticities for Seven Brands
(a) Original Order

Brand 1 2 3 4 5 6 7

1 –1.5 1.8 0.5 0.0 0.1 0.9 0.7

2 1.6 –3.7 0.3 0.4 0.1 1.3 1.2
3 0.3 0.2 –0.2 0.6 0.2 0.2 0.4

4 0.3 0.5 0.0 –0.8 0.9 0.4 0.2
5 0.3 0.6 0.4 1.1 –1.2 0.3 0.3
6 0.6 1.3 0.4 0.3 0.5 –1.4 0.5

7 0.2 0.8 0.2 0.1 0.2 0.4 –1.5

(b) Reordered

Brand 1 2 6 7 4 5 3

1 –1.5 1.8 0.9 0.7 0.0 0.1 0.5
2 1.6 –3.7 1.3 1.2 0.4 0.1 0.3
6 0.6 1.3 –1.4 0.5 0.3 0.5 0.4

7 0.2 0.8 0.4 –1.5 0.1 0.2 0.2
4 0.3 0.5 0.4 0.2 –0.8 0.9 0.0

5 0.3 0.6 0.3 0.3 1.1 –1.2 0.4
3 0.3 0.2 0.2 0.4 0.6 0.2 –0.2

At the first glance, the existence of a market and competitive struc-
ture may not be apparent from Table 3.2(a). However, if we rearrange
the table both row- and column-wise, we obtain Table 3.2(b), in which

the existence of submarkets or brand groups is more apparent. Because
of mutually large cross elasticities, brands 1, 2, 6 and 7 form a group.

Brands 4 and 5 form another. Brand 3 is more or less isolated. In this
example the groups are rather distinct in that the cross elasticities be-

tween the brands in the first group and those in the second and third
groups are small. Though the brands in each group are highly interde-

pendent, price competition between the first group and the second and
third groups is expected to be moderate or virtually nonexistent.

It would be too hasty for one to say that this industry consists of
three brand groups on the basis of Table 3.2 alone, since we have no

knowledge of what market structure(s) may be suggested with respect
to other marketing variables. It may turn out that another structure is

suggested by share elasticities with respect to product quality or promo-
tional outlays. It is necessary to look at the whole complex pattern of
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interdependencies between brands before one is able to say how submar-
kets are formed. But the principle which we will follow in determining

market structures in the remaining part of this book will be the same
as the illustrative example: we will look at the tables of direct and cross

elasticities for relevant marketing variables and reorganize them in such
a manner that brands which have mutually large cross elasticities are

collected in a group. In this task multivariate techniques based on factor
analysis will be employed. We will turn to the procedures actually used

in determining market structures in Chapter 6.

A word of caution is in order. Analyzing tables of share elasticities
may not yield a clear-cut pattern of brand grouping in some situations.

Brand groups may be partially interlocked. Or groups may be nested (or
contained) within larger groups. Table 3.3 gives an example of interlock-

ing brand groups.

Table 3.3: Interlocking and Nested Brand Groups

Brand 1 2 3 4 5 6 7

1 –2.1 0.8 0.9 0.5 * * *
2 0.6 –1.9 0.7 0.8 * * *

3 1.1 0.9 –1.2 0.6 1.0 * *
4 0.8 0.7 0.7 –1.8 0.6 * *

5 * * 0.4 0.9 –2.2 0.8 0.7
6 * * * * 0.5 –1.5 0.8

7 * * * * 0.9 0.6 –0.7

For the sake of clarity the entries which have insignificant cross elas-
ticities are not shown. In this example, group 2 (brands 3, 4, and 5) is

interlocked with group 1 (brands 1 through 4) and groups 3 (brands 5, 6,
and 7). In this situation one may interpret that elasticities in the table
are produced by three distinct buyer segments, each of which perceives

a different set of brands as relevant alternatives. But it is also plausible
to think that there are only two segments in the market, and that price

changes by brand 5 for some reasons affect only brands 3 and 4 in the
first group. Those two interpretations are not separable from the table.
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3.7 Hierarchies of Market Segments

Ambiguities in interpreting the nature of competition from the tables of
elasticities are often caused by the aggregation, that is, by not explicitly

recognizing segments of buyers in the market. As was already pointed
out, the overt pattern of brand grouping does not necessarily give hints

about the underlying patterns of buyer demand.

There are two possible interpretations on the nature of brand groups

in Table 3.2, for example. One interpretation is that there exist three
distinct market segments and the cross elasticities reflect the difference
in product perception among segments. The buyers who belong to the

first segment may consider brands 1, 2, 6, and 7 as relevant alternatives
either because of their product attributes or their collective availability

at the retail level; those who belong to the second segment may consider
only brands 4 and 5 as relevant alternatives; and so forth. In this inter-

pretation brand groups correspond one to one with market segments of
buyers.

The second interpretation of brand groups is that brands tend to be

grouped in accordance with different types of buyer needs they serve.
Suppose that the consumer uses regular and instant coffee for different

occasions (e.g., regular coffee with meals, but instant coffee for other oc-
casions). This will cause the coffee market to be divided into the regular

and instant brand groups, and minor price differences between the two
groups will not affect demands of either. This type of segmentation on

the basis of needs, or a benefit segmentation, does not produce distinct
buyer segments in the market. Of course if two brand groups serve two

entirely isolated buyer needs, they should be treated as two distinct in-
dustries rather than one. But if the price of regular coffee is drastically
reduced, the demand for instant coffee may be affected. A regular brand

with an aggressive price policy may have some cross elasticities with in-
stant brands, or vice versa. Moderate cross elasticities between groups

would force one to treat them as a single industry.

As in the above example, if the elasticities are measured only for

the entire market, it will be impossible to establish the propriety of the
above two interpretations solely on the basis of tables such as Table 3.2.
In order to evaluate the correctness of these two interpretations, one

will need data sets such as consumer panels (either diary or scanner
panels). Moreover, it is desirable to have accompanying data on the

buyer perception of alternative brands. Lacking such detailed data sets,
however, one should at least understand well the aggregate implications
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of variabilities in elasticities among buyer segments. We will first look
at the nature of elasticities in a multisegmented market.

Suppose that there are two segments in the market, containing N1

and N2 buyers, respectively. We will use the notation qi(l) and si(l) to

indicate, respectively, the sales volume and market share of brand i in
the lth segment. Since

si = [q(1)si(1) + q(2)si(2)]/q

where:

q(l) = sales volume in segment l (l = 1, 2)

q = total sales volume (q(1) + q(2)).

The point share elasticity of brand i with respect to Xkj is given by

esi.j = [(q(1)/q)(∂si(1)/∂Xkj) + (q(2)/q)(∂si(2)/∂Xkj)](Xkj/si) .

This shows that an overall elasticity is the weighted average of corre-
sponding segment elasticities, weights being the relative sales volumes

for respective segments. If we write the segment elasticity as esi.j(l),
then the general expression for esi.j is given by

esi.j =
L∑

l=1

(qi(l)/qi)esi.j(l)

where L is the number of segments and qi is the sales volume for brand
i for the entire market. This expression gives one the means to compute

the overall elasticity matrix from matrices for segments.

3.8 Distinctiveness of Marketing Activities

Fully extended attraction models have advanced our ability to deal with

the complexity of market and competitive structures, but there are other
aspects of competition which have not been properly dealt with even in

the fully extended models. We will turn to the some of the more critical
issues in this section and the next one. Here we will take up the issue of

distinctiveness of marketing activities by competing brands.

The main thesis of this section is that a brand’s marketing actions
may or may not influence the behavior of buyers depending on the degree
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to which its actions are distinguishable from the actions of its competi-
tors. This issue is very much related to the distinction between impor-

tance and salience of product attributes in buyers’ choice. For example,
any consumer will say that being nutritious is one of the important at-

tributes in his/her choice of bread. But, if all brands of bread available in
the market have the same nutritional value (or at least are perceived so

by consumers), being nutritious will not affect the consumer’s choice of
brands of bread. Instead consumers may decide on the basis of the color

of package, position of store shelf, or likes and dislikes of the persons
who appeared in television commercials. In a fiercely competitive indus-

try the pressure of competition usually works to equalize the products
offered by firms with respect to those attributes which buyers perceive
important. Thus, as an economist put it, consumers tend to make their

choice on the basis of the least important (yet salient) attributes of the
product.

This phenomenon is not limited to product attributes. The authors

posit that the effectiveness of any marketing activity would be depen-
dent on the degree that it is distinct from those of competitors. Even

casual observations bear out this proposition. Price reduction by a firm
would have more effects on market shares when other brands’ prices are
kept high than it would when all competitors also reduce their prices.

The market-share impact of one firm’s promotion would be significantly
greater when the firm is alone in promotion than it would when all firms

engage in promotional activities. Advertising activities by firms com-
peting in an oligopolistic industry tend to cancel out each other’s effect,

so much so that they have little influence on market shares. (When the
Surgeon General of the United States prohibited cigarette commercials

on television, it was rumored that the parties who were most pleased by
the decree were the competing cigarette manufacturers.)

If we take the position that it is the differences between brands, rather
than the absolute levels of marketing activities that materially affect

buyers’ preference, then we will have to devise a scheme to bring the
distinctiveness of marketing activities among brands into market-share

analysis. Luckily, attraction models handle the distinctiveness issue quite
naturally. Consider the general form of attraction models.

Ai = exp(αi + εi)
K∏

k=1

fk(Xki)
βk
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si = Ai/
m∑

j=1

Aj .

It is obvious that the value of market share for brand i, si, will not change

if we divide the numerator and denominator of the second equation above
by a constant. Specifically, if we divide each Ai by the geometric mean
of Ai over i, Ã, namely

Ã = m

√√√√
m∏

j=1

Aj

the operation will not affect the value of si, since

(Ai/Ã)/
m∑

j=1

(Aj/Ã) = Ai/
m∑

j=1

Aj = si .

Let us look at the specific forms of Ã for MCI and MNL models.

MCI Model:

Ã = exp(ᾱ + ε̄)
K∏

k=1

X̃βk

k

MNL Model:

Ã = exp(ᾱ + ε̄)
K∏

k=1

exp(βkX̄k)

where:

ᾱ = the arithmetic mean of αi over i (i = 1, 2, . . . , m)

ε̄ = the arithmetic mean of εi over i

X̃k = the geometric mean of Xki over i

X̄k = the arithmetic mean of Xki over i.

Using the above results we may write MCI and MNL models as follows.

MCI Model:

A∗
i = exp[(αi − ᾱ) + (εi − ε̄)]

K∏

k=1

(Xki/X̃k)
βk
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MNL Model:

A∗
i = exp[(αi − ᾱ) + (εi − ε̄)]

K∏

k=1

exp[βk(Xki − X̄k)]

and for both models5

si = A∗
i /

m∑

j=1

A∗
j .

Consider the implication of the foregoing analysis. One may ex-
press the variables in MCI and MNL models in a deviation form without

changing the properties of the models. In other words, we may express
a variable either as

X∗
ki = Xki/X̃k

or

X∗
ki = Xki − X̄k

and substitute X∗
ki for Xki in MCI or MNL models, respectively. This

property of attraction models does not change if we move from the

simple-effects form to differential-effects models and fully extended models.6

This shows that the variables in attraction models may be replaced by

some equivalent form of deviations from the industry mean and that
those models in essence operate on the principle of distinctiveness. Take

an MCI model, for example. If Xk is price, each brand’s price may be
expressed as deviations from the average price for the industry. If all
brands charge the same price, X∗

ki will be equal to one, and price will

5If one divides si by the geometric mean of si over i, the result would be equal to
A∗

i . In other words, if we let s̃ be the geometric mean of si over i, that is,

s̃ = m

√√√√
m∏

i=1

si

then
s∗i = si/s̃ = A∗

i .

This fact will be extensively utilized in the estimation procedure in Chapter 5.
6If monotone transformations (fk) other than identity or exponential are used,

substituting
f∗

k (Xki) = fk(Xki)/f̃k(Xk)

where f̃k(Xk) is the geometric mean of fk(Xki) over i, for fk(Xki) in an attraction
model, will not change the nature of the model.
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not affect the shares of brands. Only when the prices for some brands
deviate from the industry mean do they influence market shares of them-

selves and others.
The handling of distinctiveness by attraction models becomes a tech-

nically difficult issue when the variable in question is a qualitative one.
Product attributes are the example of variables of this type. A make of

refrigerator may or may not have an ice-maker; an automobile model may
or may not have an automatic transmission; a brand of toothpaste may

or may not have tar-control ingredients, etc. Such a variable may take
only two values, namely, one if the product (or brand) has an attribute

and zero if it does not. Of course, one may compute the industry average
for a binary (two-valued) variable (which is the same as the proportion
of products or brands which have that attribute) and subtract it from

the value for each product/brand. But by this operation the transformed
variable may take either positive or negative values, and hence it may

be used only with an MNL model (or some monotone transformation f
which allows negative values). In order to incorporate binary variables

in an MCI model a simple but effective transformation – the index of
distinctiveness – was developed.7

Suppose that Xk is a variable associated with the possession or non-
possession of an attribute. Let the proportion of products (or brands)

in this industry which have the attribute be r. If there are 10 brands
and two brands have the attribute, r will be 0.2. The value of the index
of distinctiveness for each brand is determined by the following simple

operation.
If brand i has the attribute, Xki = 1/r.

If brand i does not have the attribute, Xki = 1 − r.
Thus if r equals 0.2, those brands with the attribute are given the value

of 5 and those without the attribute will be given the value of 0.8. Note
that the smaller r, the greater the value of Xk for those brands that have

the attribute. This represents in essence the effect of the distinctiveness
of a brand. If a brand is only one which has the attribute the index value

(1/r) becomes maximal.
It is interesting to note that this index has a rather convenient prop-

erty that it is ratio-wise symmetrical to the reversal of coding a particular

attribute. If we reversed the coding of possession and nonpossession of
an attribute in the previous numerical example, r would be 0.8, and the

7Nakanishi, Masao, Lee G. Cooper & Harold H. Kassarjian [1974], “Voting for a
Political Candidate Under Conditions of Minimal Information,” Journal of Consumer

Research , 1 (September), 36–43.



74 CHAPTER 3. DESCRIBING MARKETS AND COMPETITION

value of Xk for those brands with the attribute would be 1.25 (= 1/0.8)
and that for the brands without the attribute would be 0.2 (= 1/5). In

other words, those brands without the attribute become distinctive in
the reverse direction.

The index of distinctiveness shown above transforms a binary vari-
able such that it is usable in an MCI model. Cooper and Nakanishi8

found that this index is a special case of a more general transformation
applicable not only for qualitative variables but also for any quantitative

variable. First, convert any variable Xki to a standardized score by the
usual formula.

zki = (Xki − X̄k)/σk

where:

X̄k = the arithmetic mean of Xki over i

σk = the standard deviation of Xki over i.

Since standardized z-scores (zki’s) may take both positive and nega-

tive values, they may be used in an MNL model in the form of exp(zki),
but cannot be used in an MCI model. To create a variable usable in the

latter model transform z-scores in turn in the following manner.

ζki = (1 + z2
ki)

1/2, if zki ≥ 0

ζki = (1 + z2
ki)

−1/2, if zki ≤ 0 (3.5)

This new transform, ζk, (to be called the zeta-score for Xk) takes only
positive values and has a property that it is ratio-wise symmetrical when
the positive and the negative directions of variable Xk are reversed. For

example, let the value of ζki be 2.5. If Xki is multiplied by −1, ζki will
take a value of 0.4 (= 1/2.5). It may be easily shown that the zeta-

score includes the index of distinctiveness as a special case for binary
variables.9

8Cooper, Lee G. & Masao Nakanishi [1983], “Standardizing Variables in Multi-
plicative Choice Models,” Journal of Consumer Research , 10 (June), 96–108.

9For a binary variable Xk, X̄k = r and σk = r(1 − r). Hence

z2
ki = (1 − r)/r if Xki = 1

z2
ki = r/(1 − r) if Xki = 0.

Substitution of the z2
ki’s in the zeta-score formula yields squared roots of distinctive-

ness indices.
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The zeta-score is based on the ratio of the noncentral moment of
inertia about brand i to the central moment of inertia on measure Xk

(namely, the variance of Xk) — thus reflecting how an object stands out
from a group relative to the variability of the group. This ratio is not

affected by a general linear transformation of Xk, making it an appropri-
ate transformation of interval-scale ratings — thus allowing interval-scale

rating to be used in MCI as well as MNL models. The ratio has a min-
imum value of one for brands at the center (i.e., the mean of Xk), and

increases as a particular brand gets farther away from the center. To
translate this ratio into a usable index we invert it at the mean of the

underlying variable. This allows us to tell if a brand is distinctively high
or distinctively low in an attribute compared to the other brands in the
competitive offering. Figure 3.2 gives the comparison of the zeta-score

with the exp(zki) transform.

Figure 3.2: Comparison of Zeta-Score and Exp(z-Score) Transforms

Although the shape of two transforms are quite similar, the choice

between the two may be made by the form of the elasticities. The direct
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and cross elasticities for the exp(zki) transforms are given by

E = (I − JDs)BSDX

and those for the zeta-transforms are given by

E = (I − JDs)BSDz

where:

S = the m × m matrix with elements {∂zkj/∂Xki}, i.e.,

S =
1

σk
[I −

1

m
J −

1

m
ZZ ′]

Ds = an m × m diagonal matrix with the ith diagonal element si

DX = an m × m diagonal matrix with the ith diagonal element Xki

σk = the standard deviation of Xk over i

J = an m × m matrix of 1’s

Z = an m× 1 vector of standardized scores (i.e., zki = (Xki − X̄k)/σk)

Dz = an m × m diagonal matrix with the ith diagonal element

|zki|/(1 + z2
ki) .

Figure 3.3 compares the elasticities of the zeta-score with the exp(zki)

transform.
The dip in the middle of the elasticity plot for zeta-scores corresponds

to the flat portion of the zeta-score function depicted in Figure 3.2. With
zeta-scores, change is always depicted as slower in the undifferentiated

middle portion of the distribution. Consider what this might imply for
a frequently purchased branded good (FPBG). If it establishes an initial

sale price about one-half a standard deviation below the average price
in the category, the price is distinctively low and market-share change
is relatively rapid. If the price drops further from this point, market

share increases, but at a slower and slower rate. Bargain-hunting brand
switchers have already been attracted to the brand, and little more is

to be gained from further price cuts. If the price increases from this ini-
tial sale price, market share drops rapidly at first, as the value of being
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Figure 3.3: Comparison of Zeta-Score and Exp(z-Score) Elasticities

distinctively low priced is dissipated. At the undifferentiated position
at the middle of the price distribution, market share is changing least

rapidly as minor changes on either side of the average price go largely un-
noticed. This indistinct region is similar to what DeSarbo, et al.10, Joel

H. Steckel, Yoram Wind & Richard Columbo [1987], “A Friction Model
for Describing and Forecasting Price Changes,” Marketing Science, 6, 4

(Fall), 299–319. represent in their friction-pricing model and similar to
what Gurumurthy and Little, John D. C.11 discuss in their pricing model
based on Helson’s adaptation-level theory. On the high-priced side and

analogous series of events happen. Small price increases around the av-
erage price are not noticed, but once the brand price is high enough to

be distinguished from the mass, the loss of market share becomes more
rapid. At some point, however, the change in market share must decline,

as the brand looses all but its most loyal following.

In many categories of FPBG ’s the brands pulse between a relatively

high shelf price and a relatively low sale price. In such cases the middle
of the elasticity curve is vacant and the values of the elasticities for

zeta-scores and exp(z-scores) might be quite similar. The exp(z-score)
elasticities might be most descriptive of the path of market-share change

from aggregate advertising expenditures, with increasing market-share

10DeSarbo, Wayne S., Vithala Rao, Vithala
11Gurumurthy, K. & John D. C. Little [1986], “A Pricing Model Based on Per-

ception Theories and Its Testing on Scanner Panel Data,” Massachusetts Institute of
Technology Working Paper Draft, May.
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growth as the expenditures move from zero up to the industry average,
and diminishing growth rate for additional expenditures. If the analyst

has reasons for preferring one form of elasticities to the other, he/she
should choose the one which fits his/her needs best.

An advantage zeta-scores or exp(z-scores) have relative to raw scores

is due to their role in separating the underlying importance of a feature
from the particular pattern of shared features in any given choice context.

If two brands are both on feature in a store they do not each get the
same boost in market share as if they were featured alone. By specifically

modeling such contextual effects we overcome the limitations imposed
by the IIA (context-free) assumption of Luce choice models discussed in
Chapter 2. The IIA assumption does not recognize that the value of a

major promotion is somehow shared by all the brands on sale in that
time period. The parameters

of a raw-score (Luce-type) model will always reflect the underlying

value of the feature commingled with the particular pattern of shared
features in the contexts used for calibratio

n. By explicitly modeling the pattern of feature sharing with a dis-

tinctiveness index, the parameters are free to reflect the underlying value
of a feature. In forecasting, one again uses either zeta-scores or exp(z-
scores) to help translate the underlying value of a feature to the partic-

ular pattern of shared features in new time periods. Whatever the value
of a feature, we know that the per-brand worth is diluted as the number

of brands on feature increases. When all brands are on sale, there will
be no differential market-share benefit — just an increase in the cost of

doing business. There are many situations in which marketing actions
must be distinct to be effective.

Transformations such as exp(z-scores) and zeta-scores not only high-
light the differences among brands but serve to standardize variables.

This reduces the multicollinearity inherent in the differential-effects forms
of market-response models as will be shown in Chapter 5.

3.9 Time-Series Issues

Up to this point we have discussed competition only in the static sense,

in that brands are competing within a single period of time. Gains and
losses of market shares for competing brands are viewed as the joint

market responses to marketing activities among competitors in the same
time period. But in the real world we shall have to be more concerned
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with the dynamic aspects of competition. A firm’s marketing activities
affect the performance of its product, as well as that of its competi-

tors, not only in a single period but also over many periods. A new or
improved product may not achieve immediate market acceptance; pro-

motional activities may have delayed (or lagged) effects; efforts to secure
channel cooperation may only bear fruit a long time afterwards, etc.

Furthermore, there are seasonal and cyclical fluctuations in market de-
mand which may have important competitive implications and affect the

performance of all brands in an industry. If market-share analysis is to
be meaningful, it is necessary to introduce elements in the analysis to

account for those dynamic competitive phenomena.

The developments in data-gathering techniques (to be described in

Chapter 4) in the recent years have given the analyst a new impetus
to perform time-series analysis of market-share data. Store audits have

been the traditional source of bi-monthly market-share data, but it would
have taken too many periods for the analyst to obtain from this source a
sufficient number of observations for standard time-series analysis, such

as the Box-Jenkins procedure. But the introduction of optical scanners at
the retail level has completely changed the picture. With proper care, the

analyst will be able to obtain weekly, or even daily, market-share figures
at some selected stores. This drastic improvement in data collection has

opened a new avenue of time-series analysis for market-share data.

Major considerations about time-series analysis may be summarized

in the following manner.

1. Seasonal and other regular fluctuations in industry sales.

2. Seasonal and other regular fluctuations in market shares.

3. Delayed effects of marketing variables.

Each will be discussed in turn.

First, the industry sales (i.e., market demand) for many products
are clearly subject to seasonal and other types of regular or cyclical

fluctuations over time. Ice cream in summer and toys in December are
prime examples of highly seasonal concentrations in sales. For another
example, some products might show a high rate of sales in the first week

of the month, following the payday. This tends to produce a regular
pattern of within-month cyclical fluctuations for weekly data. We will

need to take account of regular fluctuations in the industry sales in order
to be able to predict brand sales accurately. The theory in time-series
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analysis tells us to model regular fluctuations of this sort by the following
form.

Q(t) = f [w1Q(t) + w2Q(t−1) + . . . + wTQ(t−T )]

where:

Q(t) = the industry sales in period t

wτ = the weight attached to Q(t−τ ) (τ = 1, 2, . . . , T ).

Seasonal variations may be handled by a heavy weighting of wτ for suit-
able months or weeks. The beginning-of-the-month surge in some brand

shares due to paydays may be handled by heavy weighting of wτ in
weekly data.

Second, the market shares of a brand may also exhibit clear seasonal
or cyclical fluctuations. Unlike the industry sales, market shares are
expected to be less subject to seasonal variations. However, there still

may be some situations in which relatively regular fluctuations in market
shares appear. Suppose that the sales of a brand in a month were espe-

cially high because of a special promotional offer and that the average
purchase cycle for the product class is three months. This brand’s share

may show a peak in every third month after that, creating a pattern
resembling a seasonal fluctuation, provided that the initial offer created

a loyal group of customers. For whatever the real reasons, relatively
regular fluctuations in market shares may be expressed as a function of

weighted averages of past market shares, that is,

si(t) = f [φ1si(t−1) + φ2si(t−2) + . . . + φpsi(t−p)]

where si(t) is the market share of brand i in period t and φτ ’s (τ =

1, 2, . . . , p) are weights attached to past shares.

Third, we need to recognize the delayed effects of marketing variables
on market shares of competing brands. Much evidence has been accumu-

lated regarding the fact that advertising and other promotional effects
tend to be felt not only in the period of execution but also in the subse-

quent periods. Such delayed effects may be expressed as the functional
relationships between past marketing activities and the current market

shares. Mathematically stated, those relationships may be written as:

si(t) = f [X(t), X(t−1), . . . , X(t−r)]



3.9. TIME-SERIES ISSUES 81

where X(t) is the vector of marketing variables in period t for all brands
in the industry, that is,

X(t) =
(
X11(t) . . .X1m(t); X21(t) . . .X2m(t); . . . ; XK1(t) . . .XKm(t)

)

where m is the number of brands in the industry and K is the number
of relevant marketing variables.

If we combine the last two formulations, we obtain the following
dynamic market-share model.

si(t) = f [φ1si(t−1) + φ2si(t−2) + . . . + φpsi(t−p), X(t), X(t−1), . . . , X(t−r)] .

The main question is how to specify the function f in the above equation.
One may, of course, think of using a linear formulation such as

si(t) = φ1si(t−1) + φ2si(t−2) + . . . + φpsi(t−p) +

α + βi0X
′
(t) + βi1X

′
(t−1) + . . . + βirX

′
(t−r) + ε(t) (3.6)

where α, βi0, . . . , βir are parameters and ε(t) is the error term. Note that
βiv (v = 0, 1, 2, . . . , r) is a row vector of (K × m) parameters {βkijv},

each of which shows the effect of Xkj(t−v) on si(t) and that the symbol
“′ ” indicates the transpose of a row vector to a column vector.

Unfortunately, this formulation does not do because it does not sat-
isfy the logical-consistency conditions discussed in Chapter 2. In other

words, there is no guarantee that the values of si(t) estimated by this
model will be contained in the range between zero and one and the sum
of market shares will be equal to one. There may be other formulations

which satisfy the logical-consistency conditions, but in this book we will
propose a special form that is based on the log-centering transform dis-

cussed in Chapter 2.
Let us redefine variables as follows.

s∗i(t) = the log-centered market-share for brand i in period t i.e.,

log(si(t)/s̃(t))

s̃(t) = the geometric mean of si(t) over i in period t

X∗
(t) = a vector with elements {log(Xki(t)/X̃k(t))} (k = 1, 2, . . . , K;

i = 1, 2, . . . , m)

X̃k(t) = the geometric mean of Xki(t) over i for period t.
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The proposed time-series model is expressed as

s∗i(t) = φ1s
∗
i(t−1) + φ2s

∗
i(t−2) + . . . + φps

∗
i(t−p) +

βi0X
∗′
(t) + βi1X

∗′
(t−1) + . . . + βirX

∗′
(t−r) + ε(t) . (3.7)

The reader will note that equations (3.6) and (3.7) are remarkably

similar, except that in (3.7) log-centered variables are used. Yet equation
(3.7) is based on the attraction models of market share, namely, MCI
and MNL models, and yields logically consistent estimates of market

shares. Furthermore (3.7) is linear in its (log-centered) variables, and
therefore its time-series characteristics are well known. For those rea-

sons time-series analysis may be performed using log-centered variables.
The future values of the s∗i(t)’s may be computed from (3.7) and then

transformed back to the si(t)’s. For a further justification of equation
(3.7), see Appendix 3.10.1.

There are some more issues which must be discussed before we close

this section. In proposing equation (3.7) we did not touch on the property
of the error term, ε(t). One of the major issues in time-series analysis is

the handling of the error term which may be correlated with its own past
values. In particular, it has been suggested to define ε(t) as a weighted

average of present and past values of another variable, u(t), a white-noise
error term which has zero mean and variance σ2.

ε(t) = u(t) + θ1u(t−1) + . . . + θqu(t−q)

where θ1, . . . , θq are parameters. In this specification it is clear that
ε(t) is correlated with ε(t−1), ε(t−2), . . . , ε(t−q) because they share com-
mon terms in variable u. If we combine this specification of the error

term with equation (3.7), we will have a time-series model known as an
ARMAX(p, q) model.12

Another issue that must be taken into account is the obvious fact that
market shares of different brands are not independent of each other. The

joint determination of market shares may be modeled by the following
scheme. Let

s∗(t) = (s∗1(t)s
∗
2(t) . . . s∗m(t))′

be the column vector of log-centered values of market shares for period

12If we assume that ε(t) are independently distributed with zero mean and a constant
variance, (3.7) is called an ARX(p) model.
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t, and

X∗∗
(t) =




X∗
(t)

X∗
(t)

. . .
X∗

(t)




be the m × (m × K) matrix with each row identical to X∗
(t). Using this

notation the ARMAX model is written as

s∗(t) = Φ1s
∗
(t−1) + Φ2s

∗
(t−2) + . . . + Φps

∗
(t−p) +

X∗∗
(t)B

′
0 + X∗∗

(t−1)B
′
1 + . . . + X∗∗

(t−r)B
′
r + E(t) (3.8)

where:

Φl = the m × m matrix with elements { φlij }

φlij = the parameter for the effect of s∗j(t−l) on s∗i(t)

Bv = the m × (m× K) matrix with elements { βkijv }

E(t) = (ε1(t)ε2(t) . . . εm(t))′

εi(t) = the error term for s∗i(t).

The model specified by equation (3.8) is known as a vector-valued

ARMAX model in the literature of time-series analysis. In the theoretical
sense it is a most comprehensive formulation of time-series properties
associated with market-share analysis. In the practical sense, however,

it is too unwieldy for the analyst to utilize. For one thing, it is extremely
difficult to specify the model correctly in terms of the lag structure in the

model. Unless there are some a priori grounds that give the number of
lags, such as p, q, r, those numbers will have to be specified by a tedious

trial-and-error process. For another thing, even if the model is correctly
specified in terms of the lag structure, the model has been known to

pose serious estimation problems, especially when many parameters are
involved. With relatively moderate numbers of brands, variables and/or

the lags, the total number of parameters which must be estimated will
become large. For example, if m = 5, K = 3, p = 2, r = 2, and q = 1,
the total number of parameters (θ’s, β’s and φ’s) to be estimated is

(m× m)× p + m × (m× K)× r + m × q = 205
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excluding the number of variance components for E(t). It can be seen
that even a reasonable attempt for realistic modeling based on the vector-

valued ARMAX model is bound to be frustrated for those reasons.

In the remaining part of this book we will take a pragmatic stance in
that the auto-correlations of the error term εi(t) are negligible except for

perhaps the first-order correlations (i.e., corr[εi(t), εi(t−1)]). Furthermore,
by adopting a simplifying assumption that ui and uj are uncorrelated

within a period as well as over periods, we introduce a model called a
seemingly uncorrelated ARMAX model whose parameters may be more

easily estimated. This model seems to capture the basic properties of
over-time competition between the brands without unduly complicating

the analysis.

3.10 Appendix for Chapter 3

3.10.1 *Log-Linear Time-Series Model

In the last section for time-series issues, we proposed the following log-

linear model of time-series analysis in lieu of a linear model.

s∗i(t) = φ1s
∗
i(t−1) + φ2s

∗
i(t−2) + . . . + φps

∗
i(t−p) +

βi0X
∗′
(t) + βi1X

∗′
(t−1) + . . . + βirX

∗′
(t−r) + ε(t) . (3.9)

To convince the reader of the compatibility of this time-series model

with the market-share models in this book, the MCI and MNL models
in particular, we first begin with the following specification of attraction

for brand i in period t.

Ai(t) = Aφ1

i(t−1)A
φ2

i(t−2) . . .A
φp

i(t−p) exp(αi + εi(t))
K∏

k=1

r∏

v=0

m∏

j=1

X
βkijv

kij(t−v) .

This is a straightforward extension of the cross-effects model in (3.4).

One may apply the log-centering transformation to the above model to
obtain

A∗
i(t) = αi + φ1A

∗
i(t−1) + φ2A

∗
i(t−2) + . . . + φpA

∗
i(t−p) +

β0X
∗
(t) + β1X

∗
(t−1) + . . . + βrX

∗
(t−r) + ε∗i(t) (3.10)

where:



3.10. APPENDIX FOR CHAPTER 3 85

A∗
i(t) = the log-centered attraction for brand i in period t

i.e., log(Ai(t)/Ã(t))

Ã(t) = the geometric mean of Ai(t) over i in period t

X∗
(t) = a vector with elements {log(Xki(t)/X̃k(t)} (k = 1, 2, . . . , K; i =

1, 2, . . . , m)

X̃k(t) = the geometric mean of Xki(t) over i for period t

ε∗i(t) = the log-centered value of εi(t)

β0, β1, . . . , βr are parameters vectors.

The above equation looks much the same as equation (3.7) except
that the latter is defined for the log-centered values of si(t) rather than

those of Ai(t).
Fortunately, it may be easily proved that s∗i(t) is equal to A∗

i(t). Since

si(t) is proportional to Ai(t), one may write si(t) = cAi(t), the constant
of proportionality, c, being the sum of Aj(t) over j. Applying the log-

centering transformation to si(t) we have

s∗i(t) = log(si(t)/s̃(t)) .

But since si(t) = cAi(t) and hence s̃(t) = cÃ(t), implying s∗i(t) = A∗
i(t).

Substituting s∗i(t) for A∗
i(t) in equation (3.10), we obtain equation (3.7).

Note that model (3.8) is a multivariate extension of model (3.7) and
no additional justification is necessary. Thus we have shown that the

log-linear time-series models (3.7) and (3.8) are logical extensions of the
attraction models of this book.

æ
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Chapter 4

Data Collection

The goal of market-share analysis is to assess the effectiveness of market-

ing actions in competitive environments. The data-collection principle
which derives from this goal is to measure the causal variables and perfor-

mance indicators so as to give as clear a view of marketing effectiveness
as possible. There are two main threats to achieving clarity. The first
threat comes from inaccuracies in the record of transactions and market

conditions. The second threat comes from problems in aggregating even
accurate records over time, space, and transaction units. We will discuss

these threats in the next two sections. Then we will review the kind of
data currently being collected by national tracking services and discuss

how these data can be combined into a market information systems .

4.1 The Accuracy of Scanner Data

A data feast has been laid on the table for market researchers to enjoy.1

It all arrives on the analyst’s plate so well prepared and presented that
it is easy to forget that the ingredients may be less than perfect to begin

with.

In optically scanned, point-of-sale systems the shopping basket is
the basic transaction unit. If the focus of a competitive analysis or a

marketing-effectiveness study is on a single category such as margarine
or coffee, then only a component of the basic transaction is of primary
interest. This component gets recorded in two ways. First, it is posted

to an accumulating record of sales for that particular stock-keeping unit
(SKU). And second, if the customer is part of an ongoing scanner panel,

1We wish to acknowledge Penny Baron for showing us how this feast is prepared.

87
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the whole transaction is posted to a longitudinal (over time and stores)
record of this member’s purchases.

For the data to be accurately recorded the many components in the
management system (of which the POS system is only a part) all have

to work properly. The current advertised specials have to be properly
entered into the central price file. When advertised specials involve mul-

tiple like items, such as brand sizes, colors, or special packs, the proper
parent-child relations need to be recorded for each different Uniform-
Product-Code (UPC) description included in the advertised special. In

multiple-store retail chains the updated price file has to be properly
downloaded to the store controller at each retail location. There has

to be integrity in the communications between the store controller and
each register. Price is advertised in multiple ways. The price tags on

items, shelf markings, in-store displays, newspaper or magazine features,
home mailers, television and radio spots all have to report prices which

are consistent among themselves and with the central price file. And,
of course, the item has to scan properly. If an item does not scan, the

cashier is likely to record the price manually without the UPC codes
needed to post this part of the transaction to the proper files. The scan
rate has a very important effect on the utility of the data.

Store managers are granted varying degrees of autonomy by their
respective chains, but many have the flexibility to alter prices in their

store’s controller in order to meet competitive pressures in the immediate
locale, or to substitute like items for out-of-stock advertised specials.

There is cause for concern about how these special items are recorded in
the local system during a promotion period and what happens to these

records when the promotion is concluded. A single program normally
reverses all the special prices at the end of a promotional period. It is a
complex matter to deal with the general rule and all the exception.

While in most data collection efforts the research staff is respon-
sible for data integrity, with scanner data management is responsible.

The buyer/merchandiser function, the store-operations function and the
informations-systems function of the firm must all work together to in-

sure the accuracy of scanner data. It is an issue of major importance not
only to the utility of the data for further research but also to customer
satisfaction and to the firm’s compliance with business and professional

codes. Fortunately, scanner-based systems provide the records that al-
low management to trace back to the source of an inaccuracy. Error

tracking is an important feedback mechanism — helping to insure price
integrity, and thereby insuring the utility of the data for kinds of analyses
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discussed in this book.

4.2 Issues in Aggregation

Before the advent of optical scanners, we had a different view of market-
ing performance. One could plot quarterly or annual sales versus market-
ing expenditures and get the naive view that more successful companies

spent more on their advertising and promotional efforts. This would be
a particularly naive view if this year’s marketing budget is based on last

year’s revenues or profits. During sustained periods of growth, this leads
to expanding budgets and sometimes a corporate sense of invulnerability

as expanding markets lead to sales growth almost regardless of competi-
tive activity. During recessionary times, the macro-economic conditions

provide a ready scapegoat for corporate performance. Gross aggregation
of this sort masks the victories and defeats in each competitive arena

which, in sum, constitute firm performance.

The basic analytical principles involved here are similar to those dis-

cussed in section 2.8 on the relation between market share and choice
probabilities. The issue there concerned whether individual choice prob-

abilities are accurately reflected in aggregated market shares. There
we saw that special attention is needed only when choice probabilities
are heterogeneous and purchase frequencies are heterogeneous and cor-

related with choice probabilities — Case 4(b). In the present context
we are collecting data to reflect how the causal conditions of the mar-

ketplace relate to market shares. Causal condition are most likely to
be the elements of the marketing mix such as prices and promotion but

also could include regional or seasonal differences, or differences among
consumer segments. Table 4.1 displays the four cases.

The analogy to Case 1 would be when the market shares are homo-
geneous and the causal conditions are homogeneous. This might be the

case when multiple stores in a retail chain offer the same promotion in a
particular week and get essentially the same market response in different

areas. Then no insight will be lost through aggregation. Case 2 refers to
when market shares are heterogeneous, but causal conditions are homo-
geneous. This is a situation in which essentially identical stores (perhaps

stores in a chain), in essentially identical areas and time periods, offer
the same promotional package, and get different market responses. It

sounds like a missing-variables problem (i.e., there is something we could
measure which could explain the differences). If one can find the missing
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Table 4.1: Aggregating Market Shares and Causal Conditions
Causal Conditions

Market Shares Homogeneous Heterogeneous

Case 1: Case 3:

Homogeneous E(si) = πi E(si) = πi

f(Xk) = f(X̄k) f(Xk) 6= f(X̄k)

Case 2: Case 4 (a) Uncorrelated:

Heterogeneous E(si) = π̄i E(si) = π̄i

f(Xk) = f(X̄k) f(Xk) 6= f(X̄k)

Case 4 (b) Correlated:

E(si) = π̄i + cov(µ, πi)/µ̄

f(Xk) 6= f(X̄k)

variable then the causal conditions would no longer be homogeneous and

Case 2 is no longer relevant. But if Case 2 describes the situation, inves-
tigating the average market shares (or other performance measures) will

not distort the known relations to the causal conditions. The primary
loss will be degrees of freedom. In Case 3 the market shares are homo-

geneous and the casual conditions are heterogeneous. Promotions differ
over stores but the market shares do not change. While this might seem

unlikely, it can happen. Marketing efforts can be ineffective. Case 3 is
like Case 4(a) because if market shares do not change they can not be
correlated with changes in casual conditions. Here the concerns involve

how the aggregation over causal conditions is achieved. Any variable,
Xk, we measure as an indicator of a causal condition will be represented

in the models as f(Xk). Whenever causal conditions are heterogeneous
it is probably true that the function of the average measure (i.e., f(X̄k))

is not equal to the average of the functions (i.e., f(Xk)). Given a choice,
it should be the function values which are aggregated rather than the

original variables.2 Since there is no variation in the market shares,
the variation lost through aggregation of the causal conditions is unex-

plainable, and probably therefore not a major loss to our understanding.

2Often the log-centered form of the variable is a proper and convenient form to
aggregate.
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In Case 4(a) there is heterogeneity in both causal conditions and mar-
ket shares, but there is no correlation between the variability in market

shares and the variability in causal conditions. This is like Case 3, in
that aggregation should be done carefully, but there will be little, if any,

loss in explanatory power. Finally, in Case 4(b), we have the hetero-
geneity in market share being correlated with heterogeneity in causal

conditions. If differences across regions are correlated with differences in
market shares, then the model should be expanded to reflect the role of

regions. Similarly, seasonal effects could be incorporated into the model,
if they were correlated with differences in market shares. Explanatory

power will be lost if cases of these types are aggregated.

While market-share analysis is applicable in broader arenas, the pack-

aged-goods industry will be used as the basis around which the general
principles of data collection and aggregation will be discussed. The diffu-

sion of scanner technology has had its greatest impact on the packaged-
goods industry. In our estimation it is no accident that the growth

in promotion budgets relative to advertising budgets in packaged-good
firms has coincided with the availability of data showing the surges in
sales which correspond to short-term promotions. But to assess if these

promotional expenditures are worthwhile, we need data which are aggre-
gated to correspond to the promotional event. This is a classic Case 4(b)

situation. There are huge swings (heterogeneity) in market shares which
are correlated with the changes (heterogeneity) in causal conditions (the

promotional environment). Aggregation that combines promotion and
nonpromotion periods can obscure the relations we wish to study.

The basic time unit of a promotion is a week. This does not mean
that promotions only last one week. But in any given week a promotion

could begin or end. Temporal aggregation beyond a week would virtually
assure that the onset or termination of a promotion would be averaged

in with nonpromotion sales, as was the case with Nielsen’s bimonthly
store-audit data. One could argue for representing each day, but since

the promotional conditions are essentially homogeneous over days in a
week, we have either Case 1 or 2 and sacrifice at most degrees of freedom

rather than explanatory power with such aggregation.3

The basic spatial unit is either the grocery chain in a trading area or

the stores within a grocery chain. A trading area is conveniently defined
by the local newspapers. Newspaper features announcing a promotion

3One problem is that promotions could begin on different weekdays in different
trading areas. This will create at least a small aggregation bias in a weekly database.
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on a brand for all the local stores of a particular grocery chain help
specify the boundaries of a trading area. In each trading area one day

has typically evolved as Food Day (i.e., the day on which the special
food ads are printed reporting the promotions which are available for

the coming week). The basic principle is to capture the events as close
to the place of occurrence as possible. Retail scanner data record the

events as they occur, whereas warehouse-withdrawal data capture events
further from the place of transaction. If we decide to aggregate over

stores within a grocery chain, we are averaging possibly heterogeneous
market shares over a homogeneous promotional environment — a Case 2

situation, losing degrees of freedom, but not explanatory power.

The basic transaction unit is the brand. Brands come in different

sizes (or weights) and versions (e.g., conditioners for dry, normal, or oily
hair, coffee ground for drip, electric or regular percolators or automatic

coffee makers). With every variation in size, version, special pack, etc.,
there is a unique UPC code. This can translate into dozens of separate

UPC codes for a single brand — typically far too much detail to utilize in
market-share analysis. At the other extreme, national advertising typi-
cally lumps all the versions and sizes under a single brand banner. The

best level of aggregation lies somewhere between these two extremes. But
exactly where is difficult to judge. It depends on the business decisions

being studied, on practical matters such as computer capacity, and on
experience issues such as how familiar one is with this style of analysis.

For scanner data one guideline comes from the causal data. If separate
sizes or versions of a brand are promoted together, they probably can

be lumped together in the data set. As with the matter of industry
definition discussed in Chapter 2, we can make a tentative definition,

perform the analysis and see if the competitive map portrays substan-
tively different roles to the different sizes or versions of a brand. Our
experience in the coffee market led to aggregating all sizes together, but

distinguishing between ground and soluble, and between caffeinated and
noncaffeinated versions of a brand. In an Australian household-products

category (Carpenter, Cooper, Hanssens & Midgley [1988]) various sizes
of a brand were aggregated into an 11-competitor market. In a propri-

etary study of another household-products category the various sizes of
each brand were also differentiated, leading to a 66-competitor market

— too unwieldy for most purposes.

Aggregating minor brands is also a very judgmental issue. In the

Australian household-products study all the wet versions of minor brands
were aggregated into AW4 and all the dry versions of minor brands
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were aggregated into AD4. There were so many minor brands in the
market that these aggregates became the largest brands in the study.

Since combining small brands together is always a Case 4(b) aggregation,
creating large-seeming competitors out of many tiny brands is to be

avoided whenever possible. It is probably preferable to allow many more
brands as separate units of observation, but restrict the variables which

describe these brands to simple-effects, rather than differential effects or
fully extended representations. This topic will be taken up in Chapter 5.

We now turn to a description of the kinds of data which are being
collected from thousands of stores each week.

4.3 National Tracking Data

4.3.1 Store-Level Scanner Data

This section will describe the variables recorded in the major retail-
scanner databases. The data are reported in each store in each week for

each UPC code, so that aggregation into brands and grocery chains are
separate issues. The prototypes are based on InfoScan/PromotionScan

from Information Resources, Inc. (IRI), and a new database, Monitor,
from A.C. Nielsen (a division of Dun & Bradstreet).4

The emphasis in these databases is on descriptive tracking — staying
as close as possible to the data and using analytical modeling as little

as possible, but creating a database which can be aggregated to fit the
analytical needs of any client. In each store-week a core set of measures
is reported.

Volume — which is either reported in units sold or equivalized volumes

such as pounds, ounces, equivalized cases, or whatever the client
wants. In carbonated beverages the standard reporting unit is 192

ounce equivalent cases. In toilet paper the standard reporting unit
is sheets. It can be any unit which reflects the way business is

done in the category. In most product categories one would prefer
equivalized units because these will add up sensibly over UPCs. In

a very few categories the reporting standard is equivalized servings.
In powdered soft drinks this is done because the characteristics of

4In mid-1987 Dun & Bradstreet reached a tentative agreement to acquire IRI and
form Nielsen Information Resources. This move was blocked in November 1987 by the
unanimous vote of the SEC. The industry consequences of this blocked attempt are
still being played out at the time of this writing. This chapter tries to reflect the types
of data which will be available for market-share analysis regardless of the outcomes.
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the weights are so different — considering sugar-added versions,
plain versus artificial sweeteners such as aspartame, that any kind

of a weight approach would not reflect a reasonable sense of com-
parable offerings. But the report of equivalized servings is needed

in many more categories than it is offered. Wet and dry versions
which can often compete with each other are made much more com-

parable when reported in equivalized servings.5 The same is true
for ground versus soluble coffee, freeze-dried versus canned goods,

and others. It is up to individual firms to develop the equivalent
servings for their product categories.

Dollars — the revenues received. Current price can be found by dividing

Volume by Dollars.

Regular Price — an imputed shelf price. Since price in the current pe-
riod could reflect promotional discounts one needs a small artificial-

intelligence algorithm to impute a regular price from the prior
stream of prices for this UPC item in this store. Such algorithms

look for past maximum prices or find the median over the past
five or seven periods. Difficulties arise in trying to differentiate

a change in shelf price from a temporary promotion price, or in
trying to differentiate a long series of temporary price reductions

from a regular price.

ACV — All Commodity Volume of the store. This is reported either
as an annual number which does not vary from week to week,

or as a weekly number which is calibrated against total scanned
dollars. One can figure out what percentage the scanned dollars

are of total movement in the store and use this as an adjustment
between stores. Monitor uses an ACV number which is a store

characteristic. This number is adjusted only when there are serious
basic changes in the store’s volume.

ACV Selling — the ACV for that item or group of items reported only

in stores where there was some movement of that item.

Baseline Sales — a straight time-series approach to assessing baseline
sales. Since reporting in these databases is done at the UPC-store

level, one can not reflect the influence of causal variables on baseline

5Wet and dry versions of some household products differ ten-to-one in price for
equivalized servings.
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sales. This must be done by separate analyses. In the databases
themselves only a simple exponential smoothing is practical — us-

ing very few prior periods and weighting the most recent ones most
heavily.6 In Monitor, the baseline-sales figures are computed twice.

The first estimate is used to find outliers in the data. Data which
show huge sales spikes above the preliminary baseline despite the

absence of promotions are tagged (and called residual-causal ob-
servations), as are observations where sales are precipitously below

the preliminary baseline (called short-sale observations). These are
possibly misunderstood data or weeks for which the store environ-

ment is not properly coded. The baseline-sales algorithm is run
again without the tagged data.

Baseline Dollars — a combination of the baseline-sales estimate with

the regular-price algorithm.

Along with codes for the geographic market area (e.g., the Chicago

market) and the grocery chain (e.g., Jewel), these are the basic set of
measures which can be gathered directly from POS systems. Note the

emphasis on only those basic measures which will add together sensibly
over related UPCs. One reports sales volumes, not market shares, until

the question, “Shares of what?” can be answered.

4.3.2 Store Audits

Nielsen’s Monitor is like the combination of IRI’s InfoScan and Promo-
tionScan. PromotionScan audits the stores and newspapers to record the

promotional environment. Displays and features are separately collected
as zero-one measures, gathered either by people in the stores or out-

side agents and then integrated into the store database each week. The
Majer’s classification of newspaper features (A – major ads, B – coupon-

sized ads, C – line ads) is becoming the standard. A measure reflecting
in-ad coupon should be included, rather than merely being reflected as

an A- or B-feature in Majer’s terms. The displays are sometimes broken
down into big displays, little displays (such as shelf talkers), end-of-aisle
(gondola-end) displays, or dump bins in products categories such as bar

soap.
When display, store-coupon, and feature measures are incorporated

with the data from the POS system, it becomes straightforward to track

6Both InfoScan and Monitor use an Erlang (1,1) model. InfoScan has some addi-
tional terms in its baseline-sales measure for weather or seasonality.
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indices such as volume sold on feature, display or any trade deal, or
average price or price discount on any style promotion. Over weeks we

can track duration of promotions to investigate stores’ promotion policies
or promotional wearout.

Manufacturers’ coupons have been the slowest to be integrated into
tracking services. While the purchase price is reported net of coupons

redeemed, a simple zero-one measure for the redemption of a manufac-
turers’ coupons is not very helpful. The volume sold on manufacturers’

coupons is not reported in either InfoScan or Monitor, but is recorded
in the BehaviorScan panels mentioned below. In BehaviorScan panels

the coupons used in each transaction of a panelist are put in a sepa-
rate plastic bag at the check stand, then hand-keyed into the panelist’s

computer file each week. Given the effort involved, it is not surpris-
ing that recording of manufacturers’ coupons has lagged behind other

developments.

4.3.3 Household Scanner Panels

A member of a household scanner panel does little that is conspicu-
ously different from any other shopper. When purchases are made the

cashier scans the panel member’s bar-coded card. Thus, regardless of the
store in which the purchases were made, the organization maintaining
the panel can accumulate a comprehensive record of transactions for the

household. The panel members are offered minor appliances or similar
gifts, and lotteries for more major gifts, such as vacations. Demographic

information is collected at the time of recruitment. Very little in the way
of traditional survey-research questioning is conducted on panel mem-

bers. It is generally felt that the more you question these people the less
typical their shopping behavior becomes.

The role of household scanner panels in tracking databases such as In-
foScan is partly different than the role of IRI’s BehaviorScan, Nielsen’s

Erim or SAMI/Burke’s Adtel panels which were organized to support
controlled market tests for new products or advertising campaigns. Be-

haviorScan panels consist of up to 3,000 households in each of 10 mid-
sized, media-isolated markets. The media isolation is needed for control
in advertising tests. To do national tracking requires that panels to be

organized in major urban markets. Major urban markets such as New
York, Chicago, and Los Angeles are not conducive to controlled store

tests because the geographically broad shopping patterns make it orga-
nizationally difficult to capture all purchases of a household, and because
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the market-research organization lacks the ability to control exposure to
advertising. Both kinds of panels must reflect the total purchase profile

of the market area. But the BehaviorScan panels must also be parti-
tionable into a number of parallel subgroups for various test and control

conditions. BehaviorScan panels help assess new-product sales poten-
tial, media weight, media copy, price and promotions, and shelf location.

The primary focus of a panel for a national tracking service is simply
on providing nationally representative data which help to explain the

store-level performance. On a store-week level household scanner panels
readily provide penetration measures such as the percent of households

using the category or brand (down to the UPC level). Over time one
can observe the aggregate path of brand diffusion. Average interpurchase
time and average purchase quantity can be reported for the category or

the brand. These could be combined to reflect the aggregate household
inventory of each brand, leading to interesting studies of how house-

hold inventories interact with the promotional environment. One can
also report aggregate demographic characterization of the purchasers of

different brands.

Panels for market-share analysis must provide the necessary data to
address the heterogeneity issue discussed in Chapter 2, “Is there a cor-
relation between brand-choice probabilities and usage frequency?” This

suggests partitioning the panel into heavy users and light users, and look-
ing for any systematic differences in choice probabilities across brands. If

systematic differences appear, a segmentation is indicated as is discussed
later in this chapter.

4.3.4 Other Data Sources

Warehouse-withdrawal or bimonthly store-audit data used to be the pri-

mary methods for tracking sales. But for assessing marketing effective-
ness these data have obvious shortcomings. We can know what is with-

drawn, and can combine these data with the retail promotional environ-
ment. But the lag between withdrawal and sales has to be established

and may vary over retail locations. There are also the potential for early
withdrawal in anticipation of the retail promotion, transshipment of a
good trade deal or stockpiling by the stores late in the trade deal to take

advantage of discounted wholesale prices even after the retail promotion
is over. While warehouse-withdrawal data are useful for understanding

behavior in the channels of distribution, their utility for market-share
analysis has diminished with the availability of data which track trans-
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actions at the retail outlet. Bimonthly store-audit data are temporally
aggregated to an extent which masks the weekly pulsing of sales.

Diary panels have also waned in popularity with the emergence of
scanner panels. Diary panels suffer from problems of the accuracy of

recall and recording which are eliminated by scanner panels. Even when
the accuracy issue is attacked by the use of in-home UPC readers, in-

suring that all transactions are scanned in-home is still problematic.
Any in-home measurement or diary maintenance is more obtrusive than

transaction scanning at the point of purchase. How long panelists are
unaffected by their special status is a concern in any panel, but the more

obtrusive the panel measurement, the more of a problem this becomes.

Some of the data which now flow from controlled test-market scanner

panels (e.g., BehaviorScan, Erim, or Adtel), should become available for
tracking services. The television-exposure data now collected from panel

slices in BehaviorScan contain important information for evaluating the
effectiveness of media campaigns. Some BehaviorScan households elec-

tronically collect viewing data every five seconds and dump the record
automatically via an early morning telephone call which is answered
just before the bell rings. If a store-level solution to the problem of

recording manufacturers’ coupons is not found, scanner panels can pro-
vide estimates. Subpartitions of panels have also been made available

for more traditional market-research surveys of brand perceptions and
preferences, as well as attitudes, opinions, and interests. Using standard-

izations such as zeta-scores or exp(z-scores) makes it straightforward to
integrate interval-scale consumer ratings into market-share analysis.

4.4 Market Information Systems

The idea that we can relate all of the measures described above to mar-
ket performance, and do so in a way that allows us to assess the unique

marketing effectiveness of each brand, is a captivating challenge to mar-
ket analysts and a unique opportunity for managers. While the models

are oriented to relating the partial impact of each marketing instrument
on volume sold (and the consequent revenues), the costs associated with
the marketing effort of the firm and the retailer are also obtainable (or

estimable). The models serve as an inference engine, which, combined
with data and decision-support software, become an information system

capable of simulating the profit consequences of any competitive sce-
nario. The market-wide coverage of the data and the models is why we
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term these market information systems .

The models which form the inference engine collectively constitute
the system of models for competitive analysis depicted in Figure 4.1. The

“Competitive Structure Information (Longitudinal)” refers to a database
of the style developed in this chapter, where the focus is on market-

share data for each store each week and the causal variables presumed
to influence the transactions. Note that the “Standardized Data” feed
into the market-share model while the “Raw Data” feed the category-

volume model. While the modeling can be done in other ways, we feel
the raw prices and promotion levels drive the total size of the pie, while

the distinctiveness of marketing efforts reflected in the standardized data
influences how the pie is shared. The “Segment Structure Information”

which also feeds these two models refers to the data from household
panels which provide for additional understanding of store-level results

and also indicate if segmentation of the store-level data is advisable. If a
partition of heavy users versus light users is indicated, the panel provides

estimates of the population market shares for each segment and the store
sales provide sum constraints which should be useful in developing good
estimates.

The products of the market-shares times category-volume estimates

are sales forecasts for each brand in the market. These forecasts must
be diagnostically rich to fulfill their role in this system. The diagnos-

tic value of the sales models comes primarily from the elasticities. We
know from equation (2.19) that the sum of the market-share elasticity
and the category-volume estimates is the sales elasticity.7 A univariate

time-series approach to forecasting category volume will not provide the
required elasticities. We need to know how the internal conditions of the

market affect total category volume. Basically this means we need terms
in the category-volume model which correspond to the differential effects

in the market-share model. With such variables in a sales model we can
run any kind of simulations required for brand planning, and obtain the

elasticities needed for investigating competitive structure and for feeding
the strategic-analysis model.

The main method for investigating market structure is through com-
petitive maps. The procedures, described fully in Chapter 6, look at

the structure underlying the asymmetric, brand-by-brand arrays of cross
elasticities over store-weeks, and highlight the events which produce sys-

7The equation assumes no systematic competitive reaction, but this assumption is
relaxed in Chapter 6.
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tematic changes in competitive structure. A map corresponding to each
structural change can be constructed to assess the threats and opportu-

nities associated with market events. Chapter 6 will also introduce the
“Logit Ideal-Point Model”8 which can localize the most preferred regions

in the competitive maps. Competitive maps can help direct the inquiry
into the market which is essential to brand planning.

Firms have data on their own costs and should be able to provide es-
timates of competitors’ costs as well as the costs borne by the retailers for

features, displays, and store coupons. The close tying of forecasted rev-
enues with estimated costs enables managers to assess the effectiveness

of marketing actions and facilitates brand planning. With panel data on
media exposure, one can see how advertising expenditures translate into
exposures and how exposures translate into sales. When cost data are

combined with the elasticities from the sales model the basic ingredients
are present for a strategic-analysis model. Carpenter, Cooper, Hanssens,

and Midgley [1988] show how elasticities from attraction models can
be used to investigate optimal price and advertising policies under the

boundary conditions of no competitive reaction and optimal competitive
reaction. The role of these kinds of analyses is discussed in Chapter 7.

Brand planning, in general, and promotion planning, in particular,
are directly affected by such a market information system. While man-

agement is required to be explicit about the competitive environment
it expects to face, plans can be tested for both their profits and robust-
ness to competitive efforts. Chapter 7 presents a brand-planning exercise

which uses such a system. æ

8Cooper, Lee G. & Masao Nakanishi [1983b], “Two Logit Models for External
Analysis of Preferences,” Psychometrika , 48, 4 (December), 607–20.
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Figure 4.1: A System of Models for Competitive Analysis
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Chapter 5

Parameter Estimation

5.1 Calibrating Attraction Models

In Chapter 3 we presented market-share attraction models in detail. As
we tried to describe realistically the market and competitive structures,

more and more complex models had to be introduced — ending at a
cross-effects model which has a unique role for each piece of information
(e.g., each price or each feature) on the brand to which it refers as well

as on every other competitor. From the practical point of view, however,
these complex models are not useful unless it is possible for one to cali-

brate them from the actual market performance of brands. Calibration
establishes the value or importance of each of these roles in determining

the market performance of each brand. In this chapter we will review
the techniques to estimate the parameters of attraction models. We will

begin with the most basic models, i.e., the simple-effects form of MCI
and MNL models, and then proceed to more complex models such as

differential-effects and cross-effects models. To remind the reader, the
general specification of simple-effects attraction models is given below.

Ai = exp(αi + εi)
K∏

k=1

fk(Xki)
βk (5.1)

si = Ai/
m∑

j=1

Aj

where:

si = the market share of brand i

103



104 CHAPTER 5. PARAMETER ESTIMATION

Ai = the attraction of brand i

m = the number of brands

Xki = the value of the kth explanatory variable (Xk) for brand i (e.g.,
prices, product attributes, expenditures for advertising, distribu-

tion, sales force)

K = the number of explanatory variables

fk = a positive, monotone transformation of Xk

εi = the specification-error term

αi, βk (i = 1, 2, . . . , m; k = 1, 2, . . . , K) = parameters to be estimated.

We may choose either MCI or MNL models, depending on whether fk

is an identity transformation or an exponential transformation. We will

often use the MNL model below in order to simplify our presentation,
but the corresponding derivations for the MCI model would be straight-
forward. Before presenting the use of regression analysis, we will first

discuss other estimation techniques applicable to model (5.1).

5.1.1 Maximum-Likelihood Estimation

The maximum-likelihood approach to parameter estimation assumes that
the data are obtained from a random sample (sample size n) of individ-

uals who are asked to choose one brand from a set of brands (i.e., choice
set).1 The resultant data consist of the number of individuals who se-

lected object i, ni (i = 1, 2, . . . , m). This describes a typical multinomial
choice process. In order for us to use this type of data, we must modify

the definition of the model (5.1) slightly. We assume that the probabil-
ity, πi, rather than the market share si, that an individual chooses brand

i, is specified as2

πi = Ai/
m∑

j=1

Aj .

1See Haines, George, H., Jr., Leonard S. Simon & Marcus Alexis [1972], “Maximum
Likelihood Estimation of Central-City Food Trading Areas,” Journal of Marketing

Research , IX (May), 154–59. Also see McFadden [1974].
2See sections 2.8 and 4.1 for discussions of when market shares and choice proba-

bilities are interchangeable.
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Clearly πi is a function of the parameters of the model, that is, the
α’s and β’s. We may write the likelihood for a set of observed choices

n1, n2, . . . , nm as

L(α1, α2, . . . , αm; β1, β2, . . . , βK) =
m∏

i=1

πni

i (5.2)

and the logarithm of the likelihood function as

logL(α1, α2, . . . , αm; β1, β2, . . . , βK) =
m∑

i=1

ni logπi .

By maximizing L or log L with respect to the parameters of the model,
we obtain the maximum-likelihood estimates of them. The maximum-
likelihood technique may be extended to the cases where observations

are taken at more than one choice situation (multiple time periods, lo-
cations, customer groups, etc.) provided that an independent sample of

individuals is drawn at each choice situation. For example, if a series of
independent samples is drawn over time, the log-likelihood function may

be written as

log L(α1, α2, . . . , αm; β1, β2, . . . , βK) =
T∑

t=1

m∑

i=1

nit logπit

where nit and πit are the number of individuals who chose brand i in

period t and the probability that an individual chooses brand i in period
t, respectively, and T is the number of periods under observation.

The maximum-likelihood procedure is a useful technique for param-
eter estimation in that the properties of estimated parameters are well
known,3but we choose not to use it in this book for several reasons.

First, since the likelihood and log-likelihood functions are nonlinear in
parameters α’s and β’s, the maximum-likelihood procedure requires a

nonlinear mathematical-programming algorithm to obtain parameter es-
timates. Besides being cumbersome to use, such an algorithm does not

ensure that the global maximum for the likelihood function is always
found. Second, we will be using POS data primarily in calibrating the

model. Since POS data generated at a store include multiple purchases
in a period made by the same customers, the observed ni’s may not

follow the assumptions of a multinomial distribution which underlie the

3See Haines, et al. [1972].



106 CHAPTER 5. PARAMETER ESTIMATION

likelihood function. Third, we will be in most cases using observed mar-
ket shares, that is, the proportions of purchases of brand i, pi, based

on an unknown but large total number of purchases.4 The regression
techniques developed in the next section are more easily adaptable to

this type of data than the maximum-likelihood procedure.

5.1.2 Log-Linear Estimation

We will be presenting estimation procedures based on regression analysis

in the next section, but the fact that logit models could be estimated by
first applying a log-linear transformation and then applying a regression

procedure has been known for a long time. We will review some of these
procedures before we turn to the approach which we believe is the most

convenient.
Over thirty-five years ago Berkson5 showed that a logistic model

of binary choice becomes linear in parameters by the so-called logit

transformation. Suppose that each individual in a sample (of size n)
independently chooses object 1 with probability π1, given by

π1 =
1

1 + β0 exp(−
∑K

k=1 βkXk1)

where:

π1 = the probability that object 1 is chosen in a binary choice

Xk1 = the kth characteristic of object 1

β0, β1, . . . , βK = the parameters to be estimated.

If the logit transformation is applied to the above model, we have

log

(
π1

1 − π1

)
= − logβ0 +

K∑

k=1

βkXk1 (5.3)

4Neither multiple purchases in a single shopping trip, nor purchases of a brand
on each of multiple shopping trips within a single reporting period (e.g., a week), fit
well with the multinomial-sampling assumptions. Yet both such occurrences can be
common in POS data. When analyzing POS data at the store-week level the market
shares are not subject to the sampling variation with which maximum-likelihood pro-
cedures deal so well. Only the specification error requires special treatment. Section
5.4 presents generalized least-squares (GLS) procedures to cope with the issues.

5Berkson, Joseph [1953], “A Statistically Precise and Relatively Simple Method
of Estimating the Bioassay with Quantal Response, Based on the Logistic Function,”
Journal of the American Statistical Association , 48 (September), 565–99.
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That equation (5.3) is linear in parameters logβ0 and βk (k = 1, 2, . . . , K)
suggests the use of regression analysis. But, since the probability π1 is

unobservable, it must be replaced in the left-hand side of (5.3) by p1

which is the proportion of individuals in the sample who selected object

1. The final estimating equation is in the following form.

log

(
p1t

1 − p1t

)
= − logβ0 +

K∑

k=1

βkXk1t + εt . (5.4)

The subscript t indicates the tth subgroup from which the p1’s are cal-

culated. The error term εt is the difference between logit transforms of
π1 and p1, and known to be a function of π1 and the sample size per

subgroup from which p1 is calculated.6

Berkson’s method has been extended to the estimation of parameters

of multinomial logit (MNL) models by Theil.7 Assume a multinomial
choice process in which each individual independently selects object i

with probability πi from a set of m objects in a single trial, and let πi

be specified by an MNL model

Ai = exp(α +
K∑

k=1

βkXki + εi)

πi = Ai/
m∑

j=1

Aj

This model differs from (5.1) in that a single parameter α is specified
instead of m parameters, α1, α2, . . . , αm. Theil noted that

log

(
πi

π1

)
= log

(
Ai

A1

)
=

K∑

k=1

βk(Xki − Xk1) + (εi − ε1)

6To examine the property of the error term, first expand the left-hand side of (5.4)
by the Taylor expansion, keep the first two terms, and apply the mean-value theorem
to obtain

ε = log

(
p1

1 − p1

)
− log

(
π1

1 − π1

)
=

(
π∗

1

1 − π∗

1

)
(p1 − π1)

where π∗

1 is a value between π1 and p1 . The error term is clearly a function of π1

and therefore heteroscedastic (i.e. unequal variance). If we assume a simple binomial
process for each individual selecting object 1 and a reasonably large sample size (n >
100, say), the variance of ε is approximately equal to 1/nπ1(1 − π1) . The use of a
generalized least-squares procedure is called for.

7Theil, Henri [1969], “A Multinomial Extension of the Linear Logit Model,” Inter-

national Economics Review , 10 (October), 251–59.
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where 1 is an arbitrarily chosen object, and suggested the following es-
timation equation which is linear in parameters β1, β2, . . . , βK .

log

(
pit

p1t

)
=

K∑

k=1

βk(Xkit − Xk1t) + ε∗it (5.5)

where pi is the proportion of individuals who chose object i in sample,

and ε∗it is the combined error term. Subscript t indicates the tth subsam-
ple. It is obvious that equation (5.4) is a special case of (5.5) for which

the number of objects in the choice set, m, equals 2. The total degrees
of freedom for this estimation equation is (m− 1)T where T is the num-

ber of subsamples. It is known that the variances of ε∗it’s are unequal,
and McFadden [1974] studied a method for correcting for this problem.
The estimation technique which we will propose in the next section is a

variant of Theil’s method. It is true that both Theil’s method and our
method yield identical estimates of parameters and their properties are

also identical, but we believe that our method has an advantage in its
ease of interpretation.

5.2 Log-Linear Regression Techniques

As we have noted in Chapter 2, model (5.1) becomes linear in its pa-

rameters by applying the log-centering transformation. Take the MNL
model, for example. First, take the logarithm of both sides of (5.1).

log si = αi +
∑K

k=1 βkXki + εi

− log[
∑m

j=1 exp(αj +
∑K

k=1 βkXkj + εj)] .

If we sum the above equation over i (i = 1, 2, . . . , m) and divide by m,

we have

log s̃ = ᾱ +
∑K

k=1 βkX̄k + ε̄

− log[
∑m

j=1 exp(αj +
∑K

k=1 βkXkj + εj)]

where s̃ is the geometric mean of si and ᾱ, X̄k and ε̄ are the arithmetic
means of αi, Xki and εi, respectively, over i. Subtracting the above equa-

tion from the preceding one, we obtain the following form which is linear
in its parameters.

log

(
si

s̃

)
= (αi − ᾱ) +

K∑

k=1

βk(Xki − X̄k) + (εi − ε̄) .
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Similarly, the application of the log-centering transformation to the MCI
model results in

log

(
si

s̃

)
= (αi − ᾱ) +

K∑

k=1

βk log(Xki/X̃k) + (εi − ε̄)

where X̃k is the geometric mean of Xki. Since those two equations are lin-
ear in parameters α∗

i = (αi−ᾱ) (i = 1, 2, . . . , m) and βk (k = 1, 2, . . . , K),

one may estimate those parameters by regression analysis.
Suppose that we obtain market-share data for T choice situations . In

the following, we often let subscript t indicate the observations in period
t, but this is simply an example. Needless to say, the data do not have

to be limited to time-series data, and choice situations may be stores,
areas, customer groups, or combinations such as store-weeks. Applying

the log-centering transformation to the market shares and the marketing
variables for each situation t creates the following variables:

s∗it = log(sit/s̃t) (i = 1, 2, . . . , m)

s̃t = the geometric mean of sit

X∗
kit = log(Xkit/X̃kt) (i = 1, 2, . . . , m; k = 1, 2, . . . , K)

X̃kt = the geometric mean of Xkit.

Using the above notation, the regression models actually used to estimate
the parameters are specified as follows.

MNL Model:

s∗it = α1 +
m∑

j=2

α
′

jdj +
K∑

k=1

βk(Xkit − X̄kt) + ε∗it (5.6)

MCI Model:

s∗it = α1 +
m∑

j=2

α
′

jdj +
K∑

k=1

βkX
∗
kit + ε∗it (5.7)

where ε∗it = (εit−ε̄t) and ε̄t is the arithmetic mean of εit over i in period t.

Variable dj is a dummy (binary-valued) variable which takes value of 1 if
j = i and 0 otherwise. Note that estimated values of α

′

i (i = 2, 3, . . . , m)

from (5.6 – 5.7) are not the estimates of original parameters αi, but the
estimates of difference (αi − α1) where brand 1 is an arbitrarily chosen
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brand. Thus we have shown that the parameters of attraction model
(5.1) are estimable by simple log-linear regression models (5.6 – 5.7).

However, as was surmised from the discussion of Berkson’s and Theil’s
methods, the error term ε∗it in those regression models may not have an

equal variance for all i and t. We will turn to this problem in a later
section.

In earlier work8 we showed that the regression models (5.6 – 5.7) are
in turn equivalent to the following regression models.

MNL Model:

log sit = α1 +
m∑

j=2

α
′

jdj +
T∑

u=2

γuDu +
K∑

k=1

βkXkit + εit (5.8)

MCI Model:

log sit = α1 +
m∑

j=2

α
′

jdj +
T∑

u=2

γuDu +
K∑

k=1

βk logXkit + εit (5.9)

Variable Du is another dummy variable which takes value of 1 if u = t

and 0 otherwise. The corresponding models (5.6 – 5.7) and (5.8 – 5.9)
yield an identical set of estimates of α

′

i’s and βk’s , and in this sense they

are redundant. But one of the advantages of (5.8 – 5.9) is that it is not
necessary to apply the log-centering transformation to market shares

and marketing variables before regression analysis can be performed,
and therefore reduces the need for pre-processing of data. If the number
of choice situations, T , is reasonably small, it is perhaps easier to use

(5.8 – 5.9). If T is so large that the specification of dummy variables
Du (u = 2, 3, . . . , T ) becomes cumbersome, then the use of (5.6 – 5.7)

is recommended. In addition, the properties of the error term εit in
(5.8 – 5.9) are easier to analyze than those of ε∗it in (5.6 – 5.7).

5.2.1 Organization of Data for Estimation

Leaving theoretical issues aside for a while, let us look at the actual pro-

cedures one must follow for parameter estimation. Given a standardized
statistical-program package, such as SAS(R), the first thing one must do

is to arrange the data so that the regression analysis program in such a
package may handle regression models (5.6 – 5.7) and (5.8 – 5.9).

8Nakanishi, Masao & Lee G. Cooper [1982], “Simplified Estimation Procedures for
MCI Models,” Marketing Science , 1, 3 (Summer), 314-22.
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Suppose that we have market-share data for m brands in T choice
situations (periods, areas, customer groups, etc.), and accompanying

marketing activities data. Market-share data may be in the form of per-
centages (or proportions) or in absolute units. If one ignores for the

moment the heteroscedasticity (i.e., unequal variances and nonzero co-
variances) problems associated with the error terms in regression models

(5.6 – 5.9), whether the market-share data are in absolute units or in per-
centages is immaterial, because the log-centering transformation yields

identical parameter estimates regardless of whether it is applied to pro-
portions or the actual numbers of units sold.9 Table 5.1 is an example

of market-share data generated by a POS system.
These data were actually obtained at a single store in 14 weeks (i.e.,

T = 14). There are five national and two regional brands of margarine

(m = 7). Brand 2 is the same as brand 1 and brand 4 is the same
as brand 3, but in larger packages. All brands are half-pound (225g)

packages except brands 2 and 4 which are one-pound (450g) packages.
The market shares do not sum to one presumably due to private-label

brands not listed here. Market shares are volume shares computed by
first converting the numbers of units sold to weight volumes and then

computing the weight-volume share of each brand. Inspection of the
table will show that the market is obviously very price-sensitive.

We will now try to estimate the price elasticity of market shares based
on attraction model (5.1). Also given are average daily sales volumes of
margarine in this store expressed in units of half-pound package equiva-

lents. The first step in estimation is to create a data set which includes
dummy variables dj (j = 2, 3, . . . , m) and Du (u = 2, 3, . . . , T ) so that

regression model (5.8 – 5.9) may be used. We chose (5.8 – 5.9) because
the number of periods T is reasonably small (= 14). Table 5.2 shows

a partial listing of the data set arranged for estimation with the REG
procedure in the SAS(R) statistical package.

Market share and price data are taken from Table 5.1, and the log-
arithms of shares and prices are added. In addition two sets of dummy

variables — week dummies and brand dummies — are put in the data
set. The dummy variables (D1–D5) for only the first five weeks are re-
ported to save space. If the reader examines the pattern of two sets of

dummy variables, their meaning should be self-explanatory. The dummy

9This property of log-centering is called the homogeneity of the 0th degree. The
estimated values of α1 in (5.8 – 5.9) are the only terms affected by the choice between
proportions and actual numbers, but it does not influence the values of market shares
estimated by the inverse log-centering transformation.
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Table 5.1: POS Data Example (Margarine)
Ave.

Brands Daily
Weeks 1 2a 3 4b 5 6 7 Vol.

1 sharec 4 51 3 3 0 1 9 83
priced 192 139.5 158 146 163 128 148

2 share 2 75 2 1 0 0 5 103

price 192 140 158 170 163 128 148

3 share 3 48 1 1 21 0 13 98
price 192 138.5 158 170 100 138 133

4 share 4 44 24 - 0 0 11 72
price 192 139 139 170 163 148 128

5 share 5 23 10 1 - 26 7 84
price 192 139 141 170 163 128 128

6 share 6 6 3 2 0 36 13 61

price 192 176 158 170 163 128 128

7 share 4 5 5 3 - 12 20 74
price 192 179 163 170 163 128 128

8 share 3 2 2 2 41 8 11 107
price 192 169 185 161 100 134 128

9 share 8 5 3 10 - 21 17 57

price 192 168 188 129.5 163 138 128

10 share 19 3 1 47 - 5 8 77

price 178 179 188 120 163 138 128

11 share 12 2 2 19 0 18 15 65
price 178 179 188 136.5 163 138 128

12 share 6 47 1 5 0 10 9 87
price 180 139.5 188 149 163 141 128

13 share 2 23 1 13 26 6 5 120

price 192 139 188 137 100 138 128

14 share 28 15 10 19 3 3 6 107

price 132 139 144 134 109 143 128
a Brand 2 is the 1 lb. package of brand 1.
b Brand 4 is the 1 lb. package of brand 3.
c Market Share in %.
d Price per 1/2 pound in Yen.
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Table 5.2: Data Set for Estimation
B S P Week Brand

W r h Log r Log Dummies Dummies
e a a i
e n r Share c Price D D D D D d d d d d d d
k d e e 1 2 3 4 5 1 2 3 4 5 6 7

1 1 4 1.38629 192 5.25750 1 0 0 0 0 1 0 0 0 0 0 0
1 2 51 3.93183 139 4.93806 1 0 0 0 0 0 1 0 0 0 0 0
1 3 3 1.09861 158 5.06260 1 0 0 0 0 0 0 1 0 0 0 0
1 4 3 1.09861 146 4.98361 1 0 0 0 0 0 0 0 1 0 0 0
1 5 0 . 163 5.09375 1 0 0 0 0 0 0 0 0 1 0 0
1 6 1 0.00000 128 4.85203 1 0 0 0 0 0 0 0 0 0 1 0
1 7 9 2.19722 148 4.99721 1 0 0 0 0 0 0 0 0 0 0 1
2 1 2 0.69315 192 5.25750 0 1 0 0 0 1 0 0 0 0 0 0
2 2 75 4.31749 140 4.94164 0 1 0 0 0 0 1 0 0 0 0 0
2 3 2 0.69315 158 5.06260 0 1 0 0 0 0 0 1 0 0 0 0
2 4 1 0.00000 170 5.13580 0 1 0 0 0 0 0 0 1 0 0 0
2 5 0 . 163 5.09375 0 1 0 0 0 0 0 0 0 1 0 0
2 6 0 . 128 4.85203 0 1 0 0 0 0 0 0 0 0 1 0
2 7 5 1.60944 148 4.99721 0 1 0 0 0 0 0 0 0 0 0 1
3 1 3 1.09861 192 5.25750 0 0 1 0 0 1 0 0 0 0 0 0
3 2 48 3.87120 138 4.93087 0 0 1 0 0 0 1 0 0 0 0 0
3 3 1 0.00000 158 5.06260 0 0 1 0 0 0 0 1 0 0 0 0
3 4 1 0.00000 170 5.13580 0 0 1 0 0 0 0 0 1 0 0 0
3 5 21 3.04452 100 4.60517 0 0 1 0 0 0 0 0 0 1 0 0
3 6 0 . 138 4.92725 0 0 1 0 0 0 0 0 0 0 1 0
3 7 13 2.56495 133 4.89035 0 0 1 0 0 0 0 0 0 0 0 1
4 1 4 1.38629 192 5.25750 0 0 0 1 0 1 0 0 0 0 0 0
4 2 44 3.78419 139 4.93447 0 0 0 1 0 0 1 0 0 0 0 0
4 3 24 3.17805 139 4.93447 0 0 0 1 0 0 0 1 0 0 0 0
4 4 . . 170 5.13580 0 0 0 1 0 0 0 0 1 0 0 0
4 5 0 . 163 5.09375 0 0 0 1 0 0 0 0 0 1 0 0
4 6 0 . 148 4.99721 0 0 0 1 0 0 0 0 0 0 1 0
4 7 11 .39790 128 4.85203 0 0 0 1 0 0 0 0 0 0 0 1
5 1 5 .60944 192 5.25750 0 0 0 0 1 1 0 0 0 0 0 0
5 2 23 .13549 139 4.93447 0 0 0 0 1 0 1 0 0 0 0 0
5 3 10 .30259 141 4.94876 0 0 0 0 1 0 0 1 0 0 0 0
5 4 1 0.00000 170 5.13580 0 0 0 0 1 0 0 0 1 0 0 0
5 5 . . 163 5.09375 0 0 0 0 1 0 0 0 0 1 0 0
5 6 26 3.25810 128 4.85203 0 0 0 0 1 0 0 0 0 0 1 0
5 7 7 1.94591 128 4.85203 0 0 0 0 1 0 0 0 0 0 0 1
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variables for weeks graphically reflect that the influence of a particular
week is constant over brands. The dummy variables for brands graphi-

cally reflect that the baseline level of attraction for each brand is constant
over weeks, and thus independent of variations in market conditions.

5.2.2 Reading Regression-Analysis Outputs

Now we are in a position to estimate the parameters of attraction model
(5.1), in which the only marketing variable is price. Letting Pit be the

price of brand i in week t, there is only one attraction component for the
MCI version of (5.1) which may be written as

Ait = exp(αi + εit)P
βp

it

which in turn shows that the regression model (5.8) is applicable here.

log sit = α1 +
m∑

j=2

α
′

jdj +
T∑

u=2

γuDu + βp log Pit + εit .

Table 5.3 gives the estimation results from the SAS(R) REG procedure.

The dependent variable is, of course, the logarithm of market share.
The first part of the output gives the analysis of variance results. The

most important summary statistic for us is, of course, the R2 figure of
0.735 (or the adjusted R2 value of 0.65) which suggests that almost 75%
of the total variance in the dependent variable (log of share) has been

explained by the independent (=exploratory) variables (log of price, in
this case) and dummy variables d2 through d7 and D2 through D14. The

F-test with the “Prob>F” figure of 0.0001 shows that the R2 value is high
enough for us to put our reliance on the regression results.10 Note that

the total degrees of freedom (i.e., the available number of observations –
1) is not 97 but 83. This is because there are observations in the data set

(see Table 5.2) for which the market share is zero. Since one cannot take
the logarithm of zero, the program treats those observations as missing,

decreasing the total degrees of freedom. The problems associated with
zero market shares will be discussed in section 5.11.

The second part of the output gives the parameter estimates; the

intercept gives the estimate of α1; D2 through D7 give estimates of

10This test is really against a null hypothesis that all the parameters are zero. There
is less than a one-in-ten-thousand chance that this null hypothesis is true. So we can
be confident that something systematic is going on, but it takes a much closer look to
understand the sources and meaning of these systematic influences.
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Table 5.3: Regression Results for MCI Equation (5.8)

Model: MODEL1
Dep Variable: LSHARE

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F
Model 20 77.33391 3.86670 8.765 0.0001
Error 63 27.79373 0.44117
C Total 83 105.12764

Root MSE 0.66421 R-Square 0.7356
Dep Mean 1.92529 Adj R-Sq 0.6517

C.V. 34.49902

Parameter Estimates

Parameter Standard T for H0

Variable DF Estimate Error Parm=0 Prob> |T |

INTRCPT 1 44.798271 4.25812533 10.521 0.0001
D2 1 –0.623847 0.29148977 –2.140 0.0362
D3 1 –1.485840 0.26424009 –5.623 0.0001
D4 1 –1.866469 0.30893368 –6.042 0.0001
D5 1 –3.550847 0.61502980 –5.773 0.0001
D6 1 –1.971343 0.36375236 –5.419 0.0001
D7 1 –2.253214 0.37405428 –6.024 0.0001
DD2 1 0.254732 0.40530020 0.629 0.5319
DD3 1 0.117670 0.38957828 0.302 0.7636
DD4 1 0.620464 0.43444539 1.428 0.1582
DD5 1 0.269731 0.38377375 0.703 0.4847
DD6 1 0.634560 0.38485999 1.649 0.1042
DD7 1 0.644783 0.38546807 1.673 0.0993
DD8 1 0.243568 0.37504599 0.649 0.5184
DD9 1 0.778571 0.38417509 2.027 0.0469
DD10 1 0.424670 0.38363952 1.107 0.2725
DD11 1 0.742352 0.38454418 1.930 0.0581
DD12 1 0.547800 0.38402005 1.426 0.1587
DD13 1 0.274498 0.37351312 0.735 0.4651
DD14 1 –0.214251 0.37808396 –0.567 0.5729
LPRICE 1 –8.337254 0.81605692 –10.217 0.0001
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α
′

2, . . . , α
′

7; DD2 through DD14 give the estimates of γ2, γ3, . . . , γ14; the
value next to LPRICE gives the estimate of βp, and so forth. From

this table several important facts concerning the competitive structure
of margarine in this store are learned.

First, the estimated price parameter is a large negative value, −8.34,
indicating that the customers of this store are highly price-sensitive.

The statistical significance for the estimate is shown by the T-value and
“Prob> |T |” column, both of which show that the estimate is highly

significant.11 Recall from Chapter 2 that the parameter value is not the
same as the share elasticity for a specific brand. In the case of an MCI

model, the latter is given by βp(1 − sit). For example, if a brand has
a 20% share, its share elasticity with respect to price is approximately
−8.34 × (1 − 0.2) = −6.67, indicating a 10% price cut should lead to a

66.7% increase in share (from 20% to 33%).
Second, the estimates of brand specific parameters, α

′

2, . . . , α
′

m, are

all negative and statistically significant. The true values of α
′

2, . . . , α
′

m

are estimated by adding the corresponding regression estimates to the

estimated value of α1. Since α1 is estimated at 44.8, we know that
brand 1 has the strongest attraction if other things are equal. Brand 5

has the weakest attraction with α1 + α5 = (44.8− 3.55) = 41.25. This
implies that, other things being equal, brand 1 is 35 times (= exp 3.55)

as attractive as brand 5. It is rather interesting to note that brand 2
(which is one-pound package of brand 1) has approximately one-half the
attraction (exp−.62 ≈ 0.54) of brand 1. Even within a brand a weaker

size has to resort to lower unit prices than the stronger size to gain a
larger share .

Third, the estimates of γ2, γ3, . . . , γT are with few exceptions (weeks
6, 7, and 11) statistically insignificant. This normally suggests that

dummy variables D2, D3, . . . , DT may be deleted from the regression
model, which in turn suggests that a multiplicative model of market

share (discussed in Chapter 2) probably would have done as well as the
attraction (MCI) model in analyzing the data in Table 5.1. However, we

chose an attraction model not only because of how well it fits the data
but because it represents a more logically consistent view of the market

11To be precise it is significantly different from zero. It should also be noted that the
reported probability levels are for two-tailed tests. While nondirectional hypotheses
are appropriate for time-period and brand dummy variables, we often have direc-
tional hypotheses about the influences of prices or other marketing instruments. The
reported probabilities should be cut in half to assess the level of significance of one-
sided tests.
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Table 5.4: Regression Results for MNL Equation (5.9)

Model: MODEL1
Dep Variable: LSHARE

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F
Model 20 77.22749 3.86137 8.719 0.0001
Error 63 27.90015 0.44286
C Total 83 105.12764

Root MSE 0.66548 R-Square 0.7346
Dep Mean 1.92529 Adj R-Sq 0.6504

C.V. 34.56501

Parameter Estimates

Parameter Standard T for H0

Variable DF Estimate Error Parm=0 Prob> |T |

INTRCPT 1 11.250720 1.01638598 11.069 0.0001
D2 1 –0.743850 0.29829963 –2.494 0.0153
D3 1 –1.582301 0.26788475 –5.907 0.0001
D4 1 –1.980421 0.31598491 –6.267 0.0001
D5 1 –3.087742 0.58245966 –5.301 0.0001
D6 1 –2.074613 0.37148467 –5.585 0.0001
D7 1 –2.309865 0.37915203 –6.092 0.0001
DD2 1 0.240284 0.40596127 0.592 0.5560
DD3 1 0.133747 0.39036655 0.343 0.7330
DD4 1 0.648161 0.43501731 1.490 0.1412
DD5 1 0.301956 0.38439750 0.786 0.4351
DD6 1 0.665472 0.38586824 1.725 0.0895
DD7 1 0.680742 0.38658443 1.761 0.0831
DD8 1 0.282518 0.37617724 0.751 0.4554
DD9 1 0.829837 0.38524729 2.154 0.0351
DD10 1 0.486656 0.38459756 1.265 0.2104
DD11 1 0.773457 0.38552149 2.006 0.0491
DD12 1 0.555236 0.38479525 1.443 0.1540
DD13 1 0.315302 0.37443996 0.842 0.4029
DD14 1 –0.236656 0.37918145 –0.624 0.5348
PRICE 1 –0.053868 0.00528884 –10.185 0.0001
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and competition.12 Since our purpose is to estimate the parameters of an
attraction model correctly, it is not justified for us to drop those dummy

variables from the regression equation.

Table 5.4 gives the estimation results by equation (5.8) of the MNL
version of attraction model (5.1). The independent variables are the
same as those of (5.9), except that price itself is used instead of the

logarithm of price. The overall pattern of estimated parameters is very
similar to those from (5.9). The estimated value of the price elasticity

parameter, βp, is −0.054. Recall that the share elasticity with respect
to a marketing variable (price in this case) is given by βpPit(1 − sit). If

sit is 0.2 and price is 150 yen for a brand, the price elasticity is approxi-
mately −6.5, which agrees well with the estimated elasticity value from

equation (5.9).

5.2.3 The Analysis-of-Covariance Representation

It may added that regression models (5.8 – 5.9) are equivalent to an
analysis-of-covariance (ANCOVA) model of the following form.

MNL Model:

log(sit) = µ + µi + µt +
K∑

k=1

βkXkit + εit

or

MCI Model:

log(sit) = µ + µi + µt +
K∑

k=1

βk log(Xkit) + εit

where:

µ = the grand mean

µi = the brand main effects (i = 1, 2, . . . , m)

µt = the period main effects (t = 1, 2, . . . , T ).

12The parameters for the time periods merely serve the role of insuring that the
other parameters are identical to those of the original nonlinear model. This structure
guarantees that the model will produce market-share estimates which are always non-
negative and always sum to one over estimates for all alternatives in a choice situation.
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There is no brand-by-period interaction term because there is one ob-
servation per brand-period combination. The ANCOVA models yield

parameter estimates that are identical to those obtained from models
(5.8 – 5.9). This ANCOVA representation clarifies the characteristics of

(5.8); an attraction model requires that the period main effects be taken
out before the parameters of marketing variables are to be estimated.

If we ignore the properties of the error term (discussed in the next sec-
tion), the ANCOVA model may be convenient to use in practice since it

does not require cumbersome specification of brand and period dummy
variables.

5.3 Properties of the Error Term

We have deferred the discussion of the analysis of the error term up to

this point, though it has been suggested that the error terms in regression
models (5.6 – 5.7) and (5.8 – 5.9) are known to have unequal variances

and non-zero covariances in some cases and may require special care in
estimation. Before we show this, we will have to make some assumptions

as to the composition of the error term with respect to the sources of
error.

It is important to recognize two sources of errors inherent in the
estimation of market-share models. The variability due to sampling is
clearly one source of error, but there is another source of error we must

consider. Recall that attraction model (5.1) includes an error term, εi,
which arises due to the omission of some relatively minor factors from its

specification of explanatory variables, the Xkit’s, in (5.1). We will call
this source of error the specification error. Considering those sources of

error, the error terms in regression models (5.8 – 5.9) may be expressed
as

εit = ε1it + ε2it

where εi1t is the specification-error term and ε2it is the sampling-error
term.13 The error term in regression model (5.6) is given by subtracting

ε̄t, the means of εit over i in period t, from εit. Hence we may write

ε∗it = ε∗1it + ε∗2it = (ε1it − ε̄1t) + (ε2it − ε̄2t)

where ε̄1t and ε̄2t are respective means of ε1it and ε2it over i in period t.

13To be precise, the error term in attraction model (5.1) should be written as ε1it,
but we will not change the notation at this point for the reasons that will become
apparent later.
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5.3.1 Assumptions on the Specification-Error Term

We will make the following assumptions regarding the specification-error

term, ε1it, throughout the remainder of this book.

1. ε1it is normally distributed with mean 0 and variance σ2
i ,

2. the covariance between ε1it and ε1jt is σij for all t,

3. there is no correlation between ε1it and ε1ju if u 6= t,

4. ε1it is uncorrelated with the sampling-error term, ε2it.

We have so far made no assumption about the sampling-error term

(except that it is uncorrelated with the specification-error term) because
the method of data collection greatly affects the properties of sampling

errors. Two basic methods of data collection will be distinguished.
One is the survey method in which a sample is randomly drawn from

a universe of consumers/buyers. In this case the unit of analysis is the
individuals in the sample. One may ask the respondent which brand

he/she selected or how many times he/she purchased each brand in a
period. Individual selections or purchases are then aggregated over the

sample to yield market-share estimates. It may be noted that the so-
called consumer panels — diary or optical-scanner — share essentially
the same characteristics as the survey method as a data collection tech-

nique because the unit of analysis is an individual consumer or household.
Another basic method concerns data gathered from POS system. It

should be emphasized that POS-generated market-share data are based
on all purchases made in a store in a period and not on the responses

obtained from a sample of customers to the store. This means that we
need not be concerned with the normal sources of sampling variations

(i.e., sampling variations among customers within a store). Our only
concern is with sampling variations between stores, since POS data cur-

rently available to syndicated users are usually based on a sample of
stores. We will deal with each type of data collection method in turn.

5.3.2 Survey Data

Let us assume that a series of samples of consumers or buyers is obtained
by a simple random sampling. We assume that an independent sample is

drawn for each period (or choice situation). Since the following analysis
is limited within a period, time subscript t is dropped for simplicity.



5.3. PROPERTIES OF THE ERROR TERM 121

As noted above, one may ask the respondent either which brand he/she
chose or how many times he/she bought each brand in a period. We will

have to treat those two questioning techniques separately.
First consider the case in which each respondent is asked which single

brand he/she chose from a set of available brands (= choice set). In this
case we may assume that the aggregated responses to the question follow

a multinomial choice process. Formally stated, given a sample size n and
the probability that a respondent chose brand i is πi (i = 1, 2, . . . , m)

(m is the number of available brands), the joint probability that brand
i is chosen by ni individuals (i = 1, 2, . . . , m) is given by

P (n1, n2, . . . , nm) =
n!

n1!n2! . . .nm!

m∏

i=1

πni
i .

The market-share estimates are pi = ni/n (i = 1, 2, . . . , m). These
estimates are subject to sampling variations.

Let us now turn to the properties of the sampling-error term

ε2i = log pi − logπi (i = 1, 2, . . . , m)

when market-share estimates, the pi’s, are generated by the multinomial
process described above. It is well known that for a reasonably large
sample size (n > 30, say), pi is approximately normally distributed with

mean πi and variance πi(1−πi)/n. Given this approximate distribution,
we want to know how ε2i is distributed. We will use the same technique

as that used by Berkson. First, expand log pi by the Taylor expansion
around logπi and retain only the first two terms. Then apply the mean-

value theorem to obtain

log pi = log πi +

(
pi − πi

π∗
i

)

where π∗
i is a value between pi and πi. This shows that for a reasonably

large sample size, log pi is approximately normally distributed with mean
logπi and variance πi(1 − πi)/nπ∗2

i . The approximation will improve

with the increase in sample size, n. Thus the sampling error is also
approximately normally distributed with mean zero and variance πi(1−

πi)/nπ∗2
i . Furthermore, due to the nature of a multinomial process,

it is known that ε2i and ε2j (j 6= i) in the same period are correlated

and have an approximate covariance−πiπj/nπ∗
i π

∗
j where π∗

j is a value
between pj and πj. For a reasonably large sample size, we may take

Var(ε2i) = (1 − πi)/nπi (i = 1, 2, . . . , m) (5.10)

Cov(ε2i, ε2j) = −1/n (j 6= i) .
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Clearly the variance of the error term is a function in πi and takes a
minimum value 1/n for πi = 0.5 and a large value for very small values of

πi. For example, if πi = 0.01, the variance of ε2i is approximately equal to
99/n. This phenomenon is called heteroscedasticity in the variance of ε2i.

But we must also be concerned with the covariance between ε2i and ε2j

to the extent 1/n is not negligible.

The above properties of the error term are based on the assumptions
that each respondent is asked which brand he/she chose in a given choice
situation. The properties change considerably if the respondent is asked

how many units of each brand he/she purchased in a period. The indi-
vidual responses are aggregated over the sample to yield the number of

units of brand i bought by the entire sample, xi (i = 1, 2, . . . , m). The
estimate of market share of brand i is given by ŝi = xi/x where x is the

sum of the xi’s over i. What are the properties of the error term when
the logarithm of ŝi is used as the dependent variable in regression model

(5.8 – 5.9) or the log-centered value of ŝi is used in (5.6 – 5.7)? The
answer depends on the assumption we make on the process which gen-

erates the xi’s. In general the derivation of the properties of the error
term is a complicated task since ŝi is a ratio of two random variables
xi and x, the latter including the former as a part of it. Luckily for us,

however, the estimated value of parameters of (5.6 – 5.7) will not change
if we used the log-centered value of x̄i, the mean of xi, in place of the

log-centered value of ŝi in (5.6 – 5.7), since

log

(
x̄i

x̃

)
= log

(
ŝi

˜̂s

)

where x̃ and ˜̂s are the geometric means of xi and ŝi over i in a given
period. This in turn suggests that in regression model (5.8 – 5.9) we may

use log(xi) as the dependent variable without changing the estimated
values of parameters other than α1. This reduces our task in analyzing

the properties of the error term considerably.

Suppose that the xi’s are generated by an arbitrary multivariate pro-

cess with means µ1, µ2, . . . , µm and covariance matrix Θ with elements
{θij}. Note that the true market share is given by si = µi/µ where µ is
the sum of the µi’s over i. The sample mean of xi, x̄i, is an estimate of

µi. We obtain the linear approximation of logxi by the usual method,
that is,

log x̄i = log µi +
1

x∗
i

(x̄i − µi)
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where x∗
i is a value between x̄i and µi. If we replace log(ŝi) in the equa-

tions leading to (5.8 – 5.9) by log x̄i, the sampling-error term becomes

ε2i = log x̄i − logµi .

When the sample size is reasonably large, the approximate variances and

covariances among the ε2i’s are given by

Var(ε2i) = θii/nµ2
i (i = 1, 2, . . . , m)

Cov(ε2i, ε2j) = θij/nµiµj (j 6= i) .

These results agree with those for the multinomial process, if we note that
µi = πi and x̄i = pi in the latter process. The variance and covariances

of the sampling error term are clearly functions of µi and may take a
large value if µi or µj are near zero. The existence of heteroscedasticity

is obvious.

We now combine the above results with our assumptions on the
specification-error term. Under the assumptions of a multinomial choice

process and a single choice per individual, the approximate variances
and covariances among the εi’s in a same period are given by

Var(εi) = σ2
i + Var(ε2i) (i = 1, 2, . . . , m)

Cov(εi, εj) = σij + Cov(ε2i, ε2j) (j 6= i)

where Var(ε2i) and Cov(ε2i, ε2j) are given either by (5.10). Because of

the heteroscedasticity of the error term, it is known that the estimated
parameters of regression models (5.6 – 5.9) based on the ordinary least-

squares (OLS) procedure do not have the smallest variance among the
class of linear regression estimators. Nakanishi and Cooper [1974] sug-
gested the use of a two-stage generalized least-squares (GLS) procedure

in the case of a multinomial choice situation to reduce the estimation er-
rors associated with regression models (5.6 – 5.9). The interested reader

is referred to Appendix 5.14 for more details of this GLS procedure.

5.3.3 POS Data

When the market-share estimates are obtained from POS systems, it is

not necessary for us to consider the sampling errors within a store, but,
if our market-share data are obtained by aggregating market-share fig-

ures for a number of stores, we should expect that there are variations
between stores. This presents us the heteroscedasticity problem similar
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to what we encountered with survey data. But there are additional prob-
lems as well. Each store tends to offer its customers a uniquely packaged

marketing activities. If we aggregate market-share figures from several
stores, we will somehow have to aggregate marketing variables over the

stores. As discussed in Chapter 4, aggregation is safe if the causal con-
dition (i.e., promotional variables) are homogeneous over the stores – as

might be the case when stores within a grocery chain are combined. One
should avoid the ambiguity which results from aggregation, either by

explicitly recognizing each individual store or by aggregating only over
stores (within grocery chains) with relatively homogeneous promotion

policies. We will take this approach in the remainder of this book.

Stated more formally, let siht be the market share of brand i in store

h in period t, and Xkiht be the value of the kth marketing variable in
store h in period t. Regression model (5.6 – 5.7) may be rewritten with
the new notation as

MNL Model:

s∗iht = α1 +
m∑

j=2

α′
jdj +

K∑

k=1

βk(Xkiht − X̄kht) + ε∗iht (5.11)

MCI Model:

s∗iht = α1 +
m∑

j=2

α′
jdj +

K∑

k=1

βk log(Xkiht/X̃kht) + ε∗iht (5.12)

where s∗iht is the log-centered value of siht in store h in period t, and X̄kht

and X̃kht are the arithmetic mean and geometric mean of Xkiht over i in

store h in period t.

The main advantage of a disaggregated model such as (5.11 – 5.12) is

that we do not have to deal with sampling errors in estimation. Similar
expressions may be obtained for (5.7) or (5.9), but in actual applications

there will be too many dummy variables which have to be included in
the model. It will be necessary to specify (H × T − 1) dummy variables,
where H is the number of stores, which replaces the (T − 1) period

dummy variables in (5.8 – 5.9). With only a moderate number of stores
and periods it may become impractical to try to include all necessary

dummy variables for estimation, in which case the use of models (5.11 –
5.12) is recommended.
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5.4 *Generalized Least-Squares Estimation

In the preceding section we noted that the error terms in regression

models for estimating parameters of market-share models tend to be
heteroscedastic, i.e., have unequal variances and nonzero covariances. If

market-share figures are computed from POS data, the error terms in
regression models (5.6 – 5.12) involve only what we call specification

errors . Let Σ be the variance-covariance matrix of specification errors
with variances σ2

i (i = 1, 2, . . . , m) on the main diagonal and covariances

σij (j 6= i) as off-diagonal elements. Because matrix Σ is heteroscedastic,
Bultez and Naert14 proposed an iterative GLS procedure. The steps of

an iterative GLS procedure are as follows.

1. The OLS procedure is used to estimate the parameters in one of

the regression models (5.6 – 5.12), and Σ is estimated from the
residual errors.15

2. The data for each period are re-weighted by the estimated Σ̂− 1
2 .

3. The first two steps are repeated until the estimated values of the
regression parameters converge.

There is one minor problem in applying this iterative procedure. It

may be remembered that, in regression model (5.6), the log-centering
transformation is applied to the dependent variable, the variance-covari-
ance matrix for the ε∗it’s is given by

Σ∗ = (I − J/m)Σ(I − J/m)

where I is an identity matrix and J is a matrix, all elements of which
are equal to 1. The dimensions of both I and J is m × m, where m
is the number of available brands. Σ̂∗ computed from OLS residuals is

therefore singular and not invertible. Since regression models (5.8 – 5.9)
are equivalent to (5.6 – 5.7), the residuals estimated from the former

are identical to those estimated from the latter, and hence the estimated
covariance matrices are also identical. In general, if both brand-dummy

variables and period- (or store-) dummy variables are inserted in a regres-
sion model, the estimated residual covariance matrix becomes singular.

14Bultez, Alain V. & Philippe A. Naert [1975], “Consistent Sum-Constrained Mod-
els,” Journal of the American Statistical Association, 70, 351 (September) 529–35.

15One can simply sort the OLS residuals by brand and time period, compute the
variance of each brand’s residuals and compute the covariance between ordered resid-
uals for each pair of brands.
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This certainly is an impediment to the GLS estimation procedure which
requires the inverses of estimated covariance matrices.

There are three methods of circumventing this problem. One is to
delete one row and corresponding column from Σ̂∗ and invert it. One

observation (which corresponds to the deleted row/column of Σ̂∗) per
period is deleted and the parameters are estimated on the remaining

data. The drawback of this technique is that estimated parameters will
be transformations of original parameters, and hence will have to be

transformed back to the original, a process which is rather cumbersome.
A second method is to set to zero those off-diagonal elements of an

estimated residual covariance matrix which are nearly zero. Though
theoretically less justifiable, it has its merit in simplicity. Usually it is
sufficient to set just a few elements to zero before the inverse may be

obtained.16 The third method is to find the generalized inverse of Σ̂∗.

5.4.1 Application of GLS to the Margarine Data

As an illustration of the GLS technique consider the data set given in

Table 5.1. The OLS estimation technique applied to regression model
(5.8) yielded the parameter estimates in Table 5.3. Residual errors were

then computed from the above OLS results and Σ was estimated. The
estimated Σ and its inverse are shown below. Those elements of the

estimated Σ which were less than 0.3 were set to zero before the matrix
was inverted.

Covariance Matrix
Brand 1 2 3 4 5 6 7

1 0.183164 –.050222 –.009048 –.063581 0.102546 –.142236 0.020543
2 –.050222 0.386247 –.233128 –.057280 –.156411 –.261190 0.186987
3 –.009048 –.233128 0.302828 0.062024 –.066156 –.020426 –.086928
4 –.063581 –.057280 0.062024 0.234230 –.304044 –.024887 –.078644
5 0.102546 –.156411 –.066156 –.304044 0.359436 0.074360 0.020021
6 –.142236 –.261190 –.020426 –.024887 0.074360 0.880167 –.444807
7 0.020543 0.186987 –.086928 –.078644 0.020021 –.444807 0.289530

16If
one wishes to be more formal in this method, one may set to zero those elements

which are not significantly different from zero statistically. On the other hand, by
setting all off-diagonal elements to zero we obtain an easily implemented, weighted
least-squares () procedures which compensates only for differences the variance of
specification errors between brands.
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Inverse Covariance Matrix
Brand 1 2 3 4 5 6 7

1 –62.656 13.7604 –13.3493 14.4918 47.1276 –65.075 –108.934
2 13.760 –0.4766 3.5862 –8.6329 –13.2922 12.164 17.728
3 –13.349 3.5862 1.5801 –2.0956 6.5368 –12.807 –22.087
4 14.492 –8.6329 –2.0956 –4.2420 –14.5748 13.098 23.917
5 47.128 –13.2922 6.5368 –14.5748 –36.9378 45.266 76.131
6 –65.075 12.1642 –12.8072 13.0983 45.2664 –61.315 –102.342
7 –108.934 17.7275 –22.0868 23.9170 76.1315 –102.342 –165.360

The square-root of the above inverse matrix was pre-multiplied by

the data matrix for each week, and the estimates of the following form
are obtained.

(α1, α2, . . . , αm, βp)
′ = [

T∑

t=1

(X ′
tΣ̂

−1Xt)]
−1[

T∑

t=1

(X ′
tΣ̂

−1yt)]

where Xt is the independent variable matrix and yt is the vector of the

dependent variable for period t. The re-estimated parameter values are
shown in Table 5.5.

Table 5.5: GLS Estimates for Table 5.3
Parameter Parameter

Variable Estimate Variable Estimate

Intercept 45.4977

D2 –0.6529 DD6 0.4764
D3 –1.505 DD7 0.4892

D4 –1.8942 DD8 0.0709
D5 –3.4476 DD9 0.6449

D6 –2.0313 DD10 0.5546
D7 –2.2964 DD11 0.6610

DD2 –0.1283 DD12 0.2626
DD3 –0.1412 DD13 0.0022
DD4 0.4260 DD14 –0.3082

DD5 0.1464 LOG(PRICE) –8.4395

Table 5.5 gives the so-called two-stage GLS estimates. If necessary,
residual errors and Σ may be computed from the above results again

and another GLS estimates may be obtained. But, since the parameter
estimates in Table 5.3 are extremely close to those in Table 5.5, further



128 CHAPTER 5. PARAMETER ESTIMATION

iterations seem unnecessary. In fact it has been our experience that OLS
and GLS estimates are very similar in many cases. The OLS procedure

appears satisfactory in many applications.
So far we have reviewed estimation techniques applicable to relatively

simple attraction models (5.1). We have shown in Chapter 3 that at-
traction models may be extended to include differential effects and cross

effects between brands. In the following sections we will discuss more
advanced issues related to the parameter estimation of differential-effects

and cross-effects (fully extended) models.

5.5 Estimation of Differential-Effects Models

The differential-effects version of attraction model (5.1) is expressed as
follows.

Ai = exp(αi + εi)
K∏

k=1

fk(Xki)
βki (5.13)

si = Ai/
m∑

j=1

Aj

where either an identity or exponential transformation may be chosen for
fk, depending on whether an MCI or MNL model is desired. The chief

difference between (5.1) and (5.13) is the fact that parameter βki has
an additional subscript i, suggesting that the effectiveness (and hence

the elasticity) of a marketing variable may differ from one brand to the
next. This is certainly a plausible model in some situations and worth

calibrating.
The estimation of parameters βki (i = 1, 2, . . . , m) is not extremely

complicated. Only a slight modification of regression models (5.6 – 5.9)
achieves the result. Using the previous definitions for dummy variables
dj and Du, the differential-effects versions of regression models (5.6 – 5.7)

are given by
MNL Model:

s∗it =
m∑

j=2

αj(dj −
1

m
) +

K∑

k=1

m∑

j=1

βki(dj −
1

m
)Xkit + ε∗it (5.14)

MCI Model:

s∗it =
m∑

j=2

αj(dj −
1

m
) +

K∑

k=1

m∑

j=1

βki(dj −
1

m
) logXkit + ε∗it . (5.15)
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In regression models (5.14 – 5.15) the independent variables are replaced
by each variable multiplied by (dj − 1/m), which equals (1 − 1/m) if

j = i, and −1/m otherwise. Thus the number of independent variables
is (m×K) + m− 1. Note that regression models (5.14 – 5.15) will have

to be estimated without the intercept term. Most regression programs
provide us with this option.17 We cannot obtain the estimate of α1 from

(5.14) or (5.15), but this poses no problem in computing market shares
since the estimated value of αi is actually the difference between true

αi and α1.
18 Similarly regression models (5.8 and 5.9) may be modified

as follows for their respective differential-effect versions.

MNL Model:

log sit = α1 +
m∑

j=2

α′
jdj +

T∑

u=2

γuDu +
K∑

k=1

m∑

j=1

βkidjXkit + εit (5.16)

MCI Model:

log sit = α1 +
m∑

j=2

α′
jdj +

T∑

u=2

γuDu +
K∑

k=1

m∑

j=1

βkidj logXkit + εit (5.17)

Regression models (5.14 – 5.15) and (5.16 – 5.17) yield identical estimates
of parameters α’s (except α1) and β’s. If the number of periods (or choice

situations) is large, (5.14 – 5.15) will be preferred.
The reader may feel that the following regression models are more

straightforward modifications of (5.6 – 5.7), but it is not the case.

MNL Model:

s∗it = α1 +
m∑

j=2

α′
jdj +

K∑

k=1

m∑

j=1

βkidj(Xkit − X̄kt) + ε∗it (5.18)

MCI Model:

s∗it = α1 +
m∑

j=2

α′
jdj +

K∑

k=1

m∑

j=1

βkidjX
∗
kit + ε∗it (5.19)

Models (5.18 – 5.19) do not represent an attraction model, but a

log-linear market-share model in which the share of brand i is specified

17If an intercept term is included, its estimated value will be zero.
18Rather than automatically assigning α1 as the brand intercept to drop, one can

run the regression with all brand intercepts (which will be a singular model) and find
the intercept closest to zero as the one to drop.
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as

si = exp(αi + εi)
K∏

k=1

fk(X∗
ki)

βki

where X∗
ki is a centered value of Xki, that is, (Xkit−X̄kt) if fk is an expo-

nential transformation and (Xkit/X̃kt) if fk is an identity transformation.
While these models themselves may have desirable features as market-

share models, models (5.18 – 5.19) are not the estimating equations for
(5.13).19

Let us see what those modifications mean from the illustrative data
of Table 5.1. The independent variable in this case is price. In order
to estimate regression model (5.17) (for an MCI version), data must be

arranged as in Table 5.6. Only the dependent variable and a part of
explanatory variables (log(price) × brand dummy variables) are shown.

The week and brand dummy variables are the same style as in Table 5.2.
The estimation results are shown in Table 5.7. The fit of model,

as measured by R2, improved from 0.736 to 0.826. The gain from
adding six more independent variables (LPD1 through LPD7 instead

of LOG(PRICE)) may be measured by the incremental F-ratio 4.9386
(= (86.8406−77.3339)/(6× .32083)), which is significant at the .99 level

(df = 6, 57). This shows that the differential-effect model is a significant
improvement over the explanatory power of the simple-effects model.
The estimated parameter values are markedly different from one brand

to the next. Looking at the price-parameter estimates, we note that
a larger size tends to be more price sensitive than a smaller size even

within a brand. Brands 2 and 4 have greater (in absolute values) values
than brands 1 and 2. Brand 5 is most price sensitive with the estimated

value of −24.08, but this may reflect the fact that this brand’s share
was zero and hence not available for estimation for 10 weeks out of 14.

We shall discuss this issue in a later section. Two brands, 6 and 7, are
not price sensitive. Their price parameters are not statistically different

from zero as indicated by their respective “Prob.> |T |” values. As to the
estimates of α’s, we may note that they are negatively correlated with
price-parameter estimates over brands, but we will not attempt to make

generalizations on the basis of this single example.
The arrangement of data for estimating model (5.15) is given in Ta-

ble 5.8. Only the dependent variable and the price × brand dummy

19The difference here is that (5.14 – 5.15) log-center the differential-effect variable,
while (5.18 – 5.19) log-center the simple-effect variable and then multiply these log-
centered variables by the brand-specific dummy variables.
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Table 5.6: Data Set for Differential-Effects Model
W B Log Log(Price)× Brand Dummy Variables
e r
e n Share LPD1 LPD2 LPD3 LPD4 LPD5 LPD6 LPD7
k d

1 1 1.38629 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 2 3.93183 0.0000 4.9381 0.0000 0.0000 0.0000 0.0000 0.0000
1 3 1.09861 0.0000 0.0000 5.0626 0.0000 0.0000 0.0000 0.0000
1 4 1.09861 0.0000 0.0000 0.0000 4.9836 0.0000 0.0000 0.0000
1 5 . 0.0000 0.0000 0.0000 0.0000 5.0938 0.0000 0.0000
1 6 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520 0.0000
1 7 2.19722 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.9972
2 1 0.69315 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 2 4.31749 0.0000 4.9416 0.0000 0.0000 0.0000 0.0000 0.0000
2 3 0.69315 0.0000 0.0000 5.0626 0.0000 0.0000 0.0000 0.0000
2 4 0.00000 0.0000 0.0000 0.0000 5.1358 0.0000 0.0000 0.0000
2 5 . 0.0000 0.0000 0.0000 0.0000 5.0938 0.0000 0.0000
2 6 . 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520 0.0000
2 7 1.60944 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.9972
3 1 1.09861 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 2 3.87120 0.0000 4.9309 0.0000 0.0000 0.0000 0.0000 0.0000
3 3 0.00000 0.0000 0.0000 5.0626 0.0000 0.0000 0.0000 0.0000
3 4 0.00000 0.0000 0.0000 0.0000 5.1358 0.0000 0.0000 0.0000
3 5 3.04452 0.0000 0.0000 0.0000 0.0000 4.6052 0.0000 0.0000
3 6 . 0.0000 0.0000 0.0000 0.0000 0.0000 4.9273 0.0000
3 7 2.56495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.8904
4 1 1.38629 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 2 3.78419 0.0000 4.9345 0.0000 0.0000 0.0000 0.0000 0.0000
4 3 3.17805 0.0000 0.0000 4.9345 0.0000 0.0000 0.0000 0.0000
4 4 . 0.0000 0.0000 0.0000 5.1358 0.0000 0.0000 0.0000
4 5 . 0.0000 0.0000 0.0000 0.0000 5.0938 0.0000 0.0000
4 6 . 0.0000 0.0000 0.0000 0.0000 0.0000 4.9972 0.0000
4 7 2.39790 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520
5 1 1.60944 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 2 3.13549 0.0000 4.9345 0.0000 0.0000 0.0000 0.0000 0.0000
5 3 2.30259 0.0000 0.0000 4.9488 0.0000 0.0000 0.0000 0.0000
5 4 0.00000 0.0000 0.0000 0.0000 5.1358 0.0000 0.0000 0.0000
5 5 . 0.0000 0.0000 0.0000 0.0000 5.0938 0.0000 0.0000
5 6 3.25810 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520 0.0000
5 7 1.94591 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520
6 1 1.79176 5.2575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 2 1.79176 0.0000 5.1705 0.0000 0.0000 0.0000 0.0000 0.0000
6 3 1.09861 0.0000 0.0000 5.0626 0.0000 0.0000 0.0000 0.0000
6 4 0.69315 0.0000 0.0000 0.0000 5.1358 0.0000 0.0000 0.0000
6 5 . 0.0000 0.0000 0.0000 0.0000 5.0938 0.0000 0.0000
6 6 3.58352 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520 0.0000
6 7 2.56495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.8520



132 CHAPTER 5. PARAMETER ESTIMATION

Table 5.7: Regression Results for Differential-Effects Model (MCI)

Model: MODEL1
Dep Variable: LSHARE

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F
Model 26 86.84061 3.34002 10.411 0.0001
Error 57 18.28703 0.32083
C Total 83 105.12764

Root MSE 0.56641 R-Square 0.8260
Dep Mean 1.92529 Adj R-Sq 0.7467

C.V. 29.41967

Parameter Estimates

Parameter Standard T for H0

Variable DF Estimate Error Parm=0 Prob> |T |
INTRCPT 1 36.797056 9.03858643 4.071 0.0001
D2 1 28.212012 11.56852482 2.439 0.0179
D3 1 1.325003 11.79902587 0.112 0.9110
D4 1 12.426886 11.09247984 1.120 0.2673
D5 1 77.155688 41.01572380 1.881 0.0651
D6 1 –32.861595 16.87525706 –1.947 0.0564
D7 1 –43.161568 18.20494075 –2.371 0.0211
DD2 1 0.144666 0.34886522 0.415 0.6799
DD3 1 0.160885 0.34227101 0.470 0.6401
DD4 1 0.783674 0.38370743 2.042 0.0458
DD5 1 0.560437 0.33938645 1.651 0.1042
DD6 1 1.070890 0.34384160 3.114 0.0029
DD7 1 1.087786 0.34488085 3.154 0.0026
DD8 1 0.479316 0.33693519 1.423 0.1603
DD9 1 0.997026 0.34999923 2.849 0.0061
DD10 1 0.689770 0.35708659 1.932 0.0584
DD11 1 1.035196 0.35245369 2.937 0.0048
DD12 1 0.565334 0.35135768 1.609 0.1131
DD13 1 0.176690 0.34733555 0.509 0.6129
DD14 1 0.107222 0.36223872 0.296 0.7683
LPD1 1 –6.837585 1.72929552 –3.954 0.0002
LPD2 1 –12.511968 1.47178224 –8.501 0.0001
LPD3 1 –7.357565 1.51269846 –4.864 0.0001
LPD4 1 –9.629287 1.46960177 –6.552 0.0001
LPD5 1 –24.078656 8.34529863 –2.885 0.0055
LPD6 1 –0.478779 2.78016380 –0.172 0.8639
LPD7 1 1.657518 3.33624420 0.497 0.6212
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Table 5.8: Log-Centered Differential-Effects Data
B

W r Log- Centered Log(Price)× Brand Dummy Variables
e a Centered
e n Share LPD1 LPD2 LPD3 LPD4 LPD5 LPD6 LPD7
k d

1 1 –0.232 4.381 –0.823 –0.844 –0.831 0.000 –0.809 –0.833
1 2 2.313 –0.876 4.115 –0.844 –0.831 0.000 –0.809 –0.833
1 3 –0.520 –0.876 –0.823 4.219 –0.831 0.000 –0.809 –0.833
1 4 –0.520 –0.876 –0.823 –0.844 4.153 0.000 –0.809 –0.833
1 6 –1.619 –0.876 –0.823 –0.844 –0.831 0.000 4.043 –0.833
1 7 0.578 –0.876 –0.823 –0.844 –0.831 0.000 –0.809 4.164
2 1 –0.769 4.206 –0.988 –1.013 –1.027 0.000 0.000 –0.999
2 2 2.855 –1.052 3.953 –1.013 –1.027 0.000 0.000 –0.999
2 3 –0.769 –1.052 –0.988 4.050 –1.027 0.000 0.000 –0.999
2 4 –1.463 –1.052 –0.988 –1.013 4.109 0.000 0.000 –0.999
2 7 0.147 –1.052 –0.988 –1.013 –1.027 0.000 0.000 3.998

3 1 –0.665 4.381 –0.822 –0.844 –0.856 –0.768 0.000 –0.815
3 2 2.108 –0.876 4.109 –0.844 –0.856 –0.768 0.000 –0.815
3 3 –1.763 –0.876 –0.822 4.219 –0.856 –0.768 0.000 –0.815
3 4 –1.763 –0.876 –0.822 –0.844 4.280 –0.768 0.000 –0.815
3 5 1.281 –0.876 –0.822 –0.844 –0.856 3.838 0.000 –0.815
3 7 0.802 –0.876 –0.822 –0.844 –0.856 –0.768 0.000 4.075
4 1 –1.300 3.943 –1.234 –1.234 0.000 0.000 0.000 –1.213
4 2 1.098 –1.314 3.701 –1.234 0.000 0.000 0.000 –1.213
4 3 0.491 –1.314 –1.234 3.701 0.000 0.000 0.000 –1.213
4 7 –0.289 –1.314 –1.234 –1.234 0.000 0.000 0.000 3.639
5 1 –0.432 4.381 –0.822 –0.825 –0.856 0.000 –0.809 –0.809
5 2 1.094 –0.876 4.112 –0.825 –0.856 0.000 –0.809 –0.809
5 3 0.261 –0.876 –0.822 4.124 –0.856 0.000 –0.809 –0.809
5 4 –2.042 –0.876 –0.822 –0.825 4.280 0.000 –0.809 –0.809
5 6 1.216 –0.876 –0.822 –0.825 –0.856 0.000 4.043 –0.809
5 7 –0.096 –0.876 –0.822 –0.825 –0.856 0.000 –0.809 4.043

6 1 –0.129 4.381 –0.862 –0.844 –0.856 0.000 –0.809 –0.809
6 2 –0.129 –0.876 4.309 –0.844 –0.856 0.000 –0.809 –0.809
6 3 –0.822 –0.876 –0.862 4.219 –0.856 0.000 –0.809 –0.809
6 4 –1.227 –0.876 –0.862 –0.844 4.280 0.000 –0.809 –0.809
6 6 1.663 –0.876 –0.862 –0.844 –0.856 0.000 4.043 –0.809
6 7 0.644 –0.876 –0.862 –0.844 –0.856 0.000 –0.809 4.043
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variables are shown. In addition, we need (dj − 1/m), where dj is the
usual brand dummy variable for each brand. Note that all variables sum

to zero within each week. Note also that those observations for which
log(share) is missing are deleted prior to centering. The estimated values

of α2, α3, . . . , αm, βp1, βp2, . . . , βpm based on the data in Table 5.8 are
identical to those given in Table 5.7.

5.6 Collinearity in Differential-Effects Models

Bultez and Naert [1975] reported that estimating the parameters of a
differential-effects model by equations (5.14) and (5.15) was greatly in-

convenienced by the existence of model-induced collinearity. To see their
point, consider the data set shown in Table 5.9.

Table 5.9: Hypothetical Data for Differential-Effects Model

B
W r log X1×Brand Dummies X2× Brand Dummies
e a
e n share
k d X1D1 X1D2 X1D3 X2D1 X2D2 X2D3

1 1 log(s11) X111 0 0 X211 0 0
1 2 log(s21) 0 X121 0 0 X221 0
1 3 log(s31) 0 0 X131 0 0 X231

2 1 log(s12) X112 0 0 X212 0 0
2 2 log(s22) 0 X122 0 0 X222 0
2 3 log(s32) 0 0 X132 0 0 X232

3 1 log(s13) X113 0 0 X213 0 0
3 2 log(s23) 0 X123 0 0 X223 0
3 3 log(s33) 0 0 X133 0 0 X233

. . . . . . . . .

. . . . . . . . .

This data set is for the estimation of regression model (5.16) in which
three brands and two independent variables are assumed. (In actual es-
timation we will need brand and week dummy variables in addition to

the variables above.) Collinearity (i.e., high correlations between two
or more independent variables) is observed between independent vari-

ables for the same brand, e.g., between X1D1 and X2D1, between X1D2

and X2D2, between X1D3 and X2D3, and so forth. The reason for this
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phenomenon is demonstrated mathematically later in this section, but
is easy to understand. Take variables called X1D1 and X2D1 for ex-

ample. Those two variables have many zeroes in common for the same
observations (weeks). When one takes the correlations between the two

variables, those common zeroes artificially inflate the value of the corre-
lation coefficient.

Because of the potential for artificially inflated correlations Bultez

and Naert warned against careless usage of differential-effect models.
Their warning was, however, somewhat premature. There are two as-

pects to the problem — the first concerning numerical analysis, and the
second concerning the stability of parameters estimates.

Problems arise in numerical analysis when the crossproducts matrix

for a regression model becomes singular or so nearly so that it cannot be
inverted accurately. But, the crossproducts matrix for regression model

(5.15) has a unique structure which is robust against high correlations
induced by the model structure. (This is not to say that it is robust

against any high correlations.) To simplify the discussion, assume that
observations are taken only for three weeks. Then the number of inde-

pendent variables in regression will be 11 (the intercept term, two week
dummy variables, two brand dummy variables, and six variables X1D1

through X2D3). The crossproduct matrix for this set of variables will

look as follows.




9 3 3 3 3 ΣX11t ΣX12t ΣX13t ΣX21t ΣX22t ΣX23t

3 3 0 1 1 X112 X122 X132 X212 X222 X232

3 0 3 1 1 X113 X123 X133 X213 X223 X233

3 1 1 3 0 0 ΣX12t 0 0 ΣX22t 0

3 1 1 0 3 0 0 ΣX13t 0 0 ΣX23t

ΣX11tX112X113 0 0 ΣX2
11t 0 0 ΣX11tX21t 0 0

ΣX12tX122X123ΣX12t 0 0 ΣX2
12t 0 0 ΣX12tX22t 0

ΣX13tX132X133 0 ΣX13t 0 0 ΣX2
13t 0 0 ΣX13tX23t

ΣX21tX212X213 0 0 ΣX11tX21t 0 0 ΣX2
21t 0 0

ΣX22tX222X223ΣX22t 0 0 ΣX12tX22t 0 0 ΣX2
22t 0

ΣX23tX232X233 0 ΣX23t 0 0 ΣX13tX23t 0 0 ΣX2
33t




In the above matrix summation is always over t (in this case over

three weeks).

Collinearity in regression becomes a numerical-analysis problem when
the crossproduct matrix such as above is nearly singular and thus the

determinant is near zero. Since this matrix is in a block-matrix form,
the critical issue is if sub-matrix
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


ΣX2
11t 0 0 ΣX11tX21t 0 0

0 ΣX2
12t 0 0 ΣX12tX22t 0

0 0 ΣX2
13t 0 0 ΣX13tX23t

ΣX11tX21t 0 0 ΣX2
21t 0 0

0 ΣX12tX22t 0 0 ΣX2
22t 0

0 0 ΣX13tX23t 0 0 ΣX2
33t




is invertible. This matrix may be put in the form of a block-diagonal

matrix by simple row-column operations and thus is invertible, if each
of the following three matrices is invertible.

(
ΣX2

11t
ΣX11tX21t

ΣX11tX21t ΣX2

21t

)(
ΣX2

12t
ΣX12tX22t

ΣX12tX22t ΣX2

22t

)(
ΣX2

13t
ΣX13tX23t

ΣX13tX23t ΣX2

33t

)

This is to say that original correlations between X11 and X21, X12 and
X22, and X13 and X23 over t are low. This is true even if the apparent

(model-induced) correlations between them are high. The important
condition for the invertibility of the cross-product matrix as a whole
is that the correlations between original variables Xkit and Xhit (h 6=

k) over t are not too high to begin with. (If the correlations between
original variables are high, composite measures, such as those based on

principal components, will have to be used for any differential-effects
market-share model to be effective!) This conclusion does not change if

the independent variables are the logarithms of original variables Xki’s.
Thus the numerical-analysis problems created by collinearity in the usual

sense are not the real issues in this case.

Even though the matrix will usually be invertible, collinearity can

still harm the regression estimates. A further look at the source and
remedies for collinearity in these models is helpful. Since Bultez and

Naert’s [1975] discussion of the problem, their warning about collinearity
in differential-effects attraction models has been echoed by Naert and

Weverbergh and others.20 While most of these articles also investigated

20Naert, Philippe A. & Marcel Weverbergh [1981], “On the Prediction Power of
Market Share Attraction Models,” Journal of Marketing Research, 18 (May), 146-
153. Naert, Philippe A. & Marcel Weverbergh [1985], “Market Share Specification,
Estimation and Validation: Toward Reconciling Seemingly Divergent Views,” Journal

of Marketing Research , 22 (November), 453–61. Brodie, Roderick & Cornelius A. de
Kluyver [1984], “Attraction Versus Linear and Multiplicative Market Share Models:
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differential-effects versions of multiplicative and linear-additive market-
share models, no mention has been made in the marketing literature of

possible collinearities in these model forms.

This section shows that the linear-additive and multiplicative ver-

sions of differential-effects market-share models suffer from the same
sources of collinearities as the MCI and MNL versions. It is shown that

the structural sources of collinearity are largely eliminated by two stan-
dardizing transformations — zeta-scores or the exponential transform of

a standard z-score — discussed in section 3.8.

5.6.1 Three Differential-Effects Models

The three basic specifications of the differential-effects market-share mod-
els – linear-additive (LIN), multiplicative (MULT), and multiplicative

competitive-interaction (MCI) or attraction versions – are given in equa-
tions (5.20 – 5.22) parallel to the definitions in Naert & Weverbergh’s

[1984] equations:

LIN sit = αi +
K∑

k=1

βkift(Xkit) + εit (5.20)

MULT sit = Ait (5.21)

MCI sit =
Ait∑m

j=1 Ajt
(5.22)

where:21

Ait = (αi + εit)
K∏

k=1

[ft(Xkit)]
βki .

An Empirical Evaluation,” Journal of Marketing Research, 21 (May), 194-201. Ghosh,
Avijit, Scott Neslin & Robert Shoemaker [1984], “A Comparison of Market Share
Models and Estimation Procedures,” Journal of Marketing Research, 21 (May), 202-
210. Leeflang, Peter S. H. & Jan C. Reuyl [1984a], “On the Predictive Power of
Market Share Attraction Models,” Journal of Marketing Research 21 (May), 211-
215. Leeflang, Peter S. H. & Jan C. Reuyl [1984b], “Estimators of the Disturbances
in Consistent Sum-Constrained Market Share Models,” Working Paper, Faculty of
Economics, University of Gronigen, P.O. Box 9700 AV Gronigen, The Netherlands.

21Note here we are focusing on ft rather than fk. We will assume we have agreed on
the model type (MCI in this case, that is, fk is the identity transformation) and our
interest here is in the possible influence of transformations within a choice situation
on collinearity.



138 CHAPTER 5. PARAMETER ESTIMATION

All of these models are reduced to their corresponding simple-effects
versions by assuming:

βki = βkj = βk ∀ i, j .

The reduced form22 resulting from this simplified estimation procedure
allows us to see the similarities among all three specifications of the

differential-effects model, as seen in Tables 5.2 and 5.9. Note in Ta-
ble 5.9 that each differential effect has only one nonzero entry in each

time period. The difference between LIN and MULT models is just that
the MULT model uses the log of the variable as the nonzero entry and the

LIN model uses the raw variable. The difference between the MULT and
MCI models is basically that the MCI form incorporates a series of time-

period dummy variables from Table 5.2 which insure that the estimated
parameters are those of the original nonlinear model in equation (3.1).
Another difference, of course, is that the estimates of market share in

the MCI model come from inverse log-centering,23 while in the MULT
model the exponential transformation of the estimated dependent vari-

able serves as the market-share estimate. Inverse log-centering and the
time-period dummy variables guarantee that the MCI model will provide

logically consistent market-share estimates (all estimates being between
zero and one, and summing to one over all brands in each time period),

while neither LIN or MULT provide logically consistent estimates.

The problem of collinearity can be traced to within-brand effects.
There is zero correlation between a time-period dummy variable and a

brand-specific dummy variable. Since the time-period dummy variables
cannot be a major source of collinearity, then the MULT and MCI models

do not differ substantially in their sources of collinearity. Nor do the cor-
relations between effects for different brands contribute substantially to

collinearity. For m brands the correlation between brand-specific dummy
variables for different brands is −1/(m−1). With even ten brands there

is only 1% overlap in variance between intercepts for different brands.
An analogous result holds for the correlations between dummy variables

for different time periods. The within-brand effects are analyzed in the
next section.

22The reduced form is simply the variables after they are transformed to be ready
for input into a multiple-regression routine.

23Nakanishi & Cooper [1982].
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5.6.2 Within-Brand Effects

The special problems of jointly longitudinal and cross-sectional analy-
sis have been discussed in psychometrics, econometrics, as well as the

quantitative-analysis areas in education, sociology, and geography. The
earliest reference is to Robinson’s24 covariance theorem, which was pre-
sented by Alker25 as:

rXY = WRXY

√
1 − E2

Y R

√
1 − E2

XR + ERXY EY REXR (5.23)

where:

rXY is the correlation between column X and column Y in the reduced
form of the differential-effects model. In this application X and Y

represent within-brand effects such as price and advertising for one
brand.

WRXY is defined to be the pooled within-period correlation of X and

Y . In our case this simplifies to a congruence coefficient, giving
very high values under certain conditions discussed below.

ERXY is the between-period or ecological correlation. In our case this
is the simple correlation between, say, the log of price and the log

of advertising values for a single brand.

EY R and EXR are the correlation ratios (i.e., the proportions of vari-
ation in X and Y , respectively, that are attributable to between-

period differences). In our case these values control how much
weight is given to the congruence coefficient versus the simple cor-

relation.

Looking again at Table 5.9 shows that for differential effects within

a brand, all the nonzero entries are aligned and all the zero entries are
aligned in the reduced form, and there is only one nonzero entry in each

time period. This results in very simplified forms for the components of
Robinson’s covariance theorem. If we let xt and yt be the single nonzero

24Robinson, W. S. [1950], “Ecological Correlation and the Behavior of Individuals,”
American Sociological Review, 15, 351-357.

25Alker, Hayward R. Jr. [1969], “A Typology of Ecological Fallacies,” in Mattei Do-
gan & Stein Rokkan (editors), Quantitative Ecological Analysis in the Social Sciences,
Cambridge, MA: The M.I.T. Press, 69-86.
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entries in period t for column X and Y , respectively, then for our special
case:

WRXY =

∑T
t=1 xtyt√∑T

t=1 x2
t

∑T
t=1 y2

t

.

This is a congruence coefficient, often used for assessing the agreement
between ratio-scaled measures.26 Because the mean levels of the variables

influence the congruence, x and y of the same sign push WRXY toward
1.0 much faster than the simple correlation. For prices (greater than

$1.00) and advertising expenditures the reduced form would have a series
of positive log-values which might well have a very large value for WRXY .
For these same variables in share form (price-share or advertising-share),

the reduced form would have matched negative numbers, which still could
lead to large values for WRXY . For variables of consistently opposite

signs, WRXY could push toward −1.0 even in cases of modest simple
correlations.

For both raw variables (e.g., price and advertising) and for marketing
variables in their share form (e.g., relative price and advertising share)

the correlation ratios E2
XR and E2

Y R have a maximum value of 1
m .

E2
XR =

1
m2

[
∑T

t=1

X2
jt

T −

(∑T

t=1
Xjt

T

)2
]

1
m

[
∑T

t=1

X2
jt

T − 1
m

(∑T

t=1
Xjt

T

)2
] ≤

1

m
. (5.24)

So when correlating two effects within a brand we have at best:

rXY =

(
m − 1

m

)
WRXY +

(
1

m

)
ERXY . (5.25)

Thus the correlation rXY is composed of two parts. A small part, at

most 1
m , is due to the simple correlation of the X and Y values for brand

j over time periods. A very large part, at least m−1
m is due to the con-

gruence coefficient WRXY . Thus, for raw-score or share-form marketing
variables, pairwise collinearity is likely for any two effects within a brand

in differential-effects models. But collinearity is not merely a pairwise

26Tucker, Ledyard R [1951], “A Method of Synthesis of Factor Analysis Studies,”
Personnel Research Section Report, No. 984, Washington, D.C., Department of the
Army. Also see Korth, Bruce & Ledyard R Tucker [1975], “The Distribution of Chance
Coefficients from Simulated Data,” Psychometrika, 40, 3 (September), 361-372.
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problem in these models.27 Collective collinearity for all the within-
brand effects is very likely indeed. This is true for the differential-effects

versions of the linear-additive model, the multiplicative model as well as
the MCI model. Fortunately there exist simple remedies which are the

topic of the next section.

5.6.3 Remedies

The remedies for collinearity were hinted at in the Bultez and Naert
[1975] article which first discussed the problem. They said, “... if the

variables have zero means” the correlations in the extended model would
be the same as the correlation in the simple model (p. 532). More pre-

cisely, it can be said that if the reduced form of the values for brand i for
two different variables each have a mean of zero over time periods, then

WRXY is equal to ERXY , and thus rXY would be equal to the simple
correlation of the reduced forms of the brand i values. This remedy is not

a general solution for all variables in a differential-effects model because
forming deviation scores within a brand over time ignores competitive
effects. One case where this remedy might be appropriate, however, is

for a variable reflecting the promotion price of a brand. This variable
would reflect current price as a deviation from a brand’s historic average

price.

As potential remedies, consider zeta-scores and the exponential trans-

formation of standard scores discussed in Chapter 3 (section 3.8). Both
transformations standardize the explanatory variables, making the infor-

mation relative to the competitive context in each time period. There are
several advantages to standardizing measures of marketing instruments

in each time period. First, one should remember that the dependent
measures (share or choice probability) are expressed in a metric which,

while normalized rather than standardized, is still focused on represent-
ing within time-period relations. Representations of the explanatory

variables which have a have similar within time-period focus have the
advantage of a compatible metric. In this respect, variables expressed in
share form have as much of an advantage as zeta-scores or exp(z-scores).

Any of the three would be superior to raw scores in reflecting the ex-
planatory information in a way which aligns with the dependent variable.

27For further discussion see Mahajan, Vijay, Arun K. Jain & Michel Bergier [1977],
“Parameter Estimation in Marketing Models in the Presence of Multicollinearity: An
Application of Ridge Regression,” Journal of Marketing Research, 14 (November),
586-591.
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While raw prices might have a stronger relation with category volume
or primary demand, relative prices could have more to do with how the

total volume is shared among the competitors.

A second advantage applies to standardizations, rather than normal-
izations. In the reduced form, the means (of a brand over time periods) of

a zeta-score or exp(z-score) are more likely to be closer to zero, than the
corresponding means of the reduced form of a normalized variable. Thus

WRXY for a zeta-score or exp(z-score) would be less inflated (closer to
the value of the simple correlation ERXY ) than would be the congruence

coefficient for two within-brand effects represented in share form.

Table 5.10 provides an empirical demonstration of the effects on
collinearity of zeta-scores and exp(z-scores), compared with the raw
scores or the share scores. The data concern price and advertising

measures representing competition among 11 brands in an Australian
household-products category.28 There are 11 differential-price effects,

10 differential-advertising effects, and 10 brand-specific intercepts in a
differential-effects market-share model for this category. The tabled val-

ues are condition indices reflecting the extent of collinearity or near de-
pendencies among the explanatory variables. A condition index is the

ratio of the largest singular value (square root of the eigenvalue) to the
smallest singular value of the reduced form of the explanatory variables

in the market-share model.29 The higher the condition index the worse
the collinearity in the system of equations. Belsley, Kuh, and Welsch
[1980] develop empirical evidence that weak dependencies are associated

with condition indices between 5 and 10, moderate to strong relations are
associated with indices of 30 to 100, and indices of 100 or more “appear

to be large indeed, causing substantial variance inflation and great po-
tential harm to regression estimates”(p. 153). Note in Table 5.10 for raw

scores, Xkit, all three models (LIN, MULT, and MCI) reflect potential
problems. These problems are not remedied when marketing instruments

are expressed in share form. As a market-share model, which uses the
share form of marketing instruments, becomes more comprehensive, by

including more brands, the problems would worsen. This is because the
price shares and advertising shares would, in general, become smaller,
thus making the log of the shares negative numbers of larger and larger

absolute value. This would press WRXY closer to +1.0.

28Carpenter, Cooper, Hanssens, and Midgley [1988].
29Belsley, David A., Edwin Kuh & Roy E. Welsch [1980], Regression Diagnostics:

Identifying Influential Data and Sources of Collinearity, New York: John Wiley &
Sons, 103-4.
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Table 5.10: Condition Indices Australian Household-Products Example

Transformation of Raw Scores

Model Raw Scores Share Form Zeta-Scores Exp(Z-Scores)

LIN 3065 313 61 75
MULT 484 3320 22 17

MCI 627 3562 24 23

Standardizing within each competitive set using zeta-scores or exp(z-

scores) has a dramatically favorable impact on the collinearity of the sys-
tem of equations. The condition indices for the MULT and MCI models

are less than 25. This is below the level indicating moderate collinearity,
and far below the danger point.30 Linear or nonlinear trends in the mean
level of the raw variables are major contributors to collinearity. By re-

moving the mean level of the raw variables in each time period, the two
remedies illustrated in Table 5.10 both eliminate one major source con-

tributing to high (positive or negative) values in WRXY . By standard-
izing the variance over competitors in each time period, both remedies

help keep the mean values for each brand over time nearer to zero.
These basic results mean that, if one standardizes variables in a man-

ner appropriate for these multiplicative models, it is practical to use
differential-effects market-share models.

5.7 Estimation of Cross-Effects Models

We now come to the estimation problems associated with the fully ex-
tended attraction (or cross-effects) model discussed in Chapter 3.

Ai = exp(αi + εi)
K∏

k=1

m∏

j=1

fk(Xkj)
βkij (5.26)

si = Ai/
m∑

j=1

Aj

30The absolute standards given by Belsley Kuh and Welsh [1980] for condition
indices are probably too conservative. As the number of variables and observations
increases we can expect the ratio of the largest and smallest singular values to grow
larger. Further study is needed to see what boundaries are acceptable for large data
sets.
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As before, the fk in the above equation may be an identity (for an MCI
model) or an exponential (for an MNL model) transformation. The

most important property of the above model is, of course, the existence
of cross-effect parameters, βkij (i, j = 1, 2, . . . , m; k = 1, 2, . . . , K). We

are now faced with the seemingly insurmountable problem of estimating
(m × m × K) + m parameters.

Surprisingly, estimating parameters of a cross-effects model is not
very difficult, and in some sense easier than estimating parameters of a

differential-effects model. McGuire, Weiss, and Houston31 showed that
the following regression models estimate the parameters of (5.26).

MNL Model:

s∗it = α1 +
m∑

j=2

α′
jdj +

m∑

j=1

K∑

k=1

m∑

h=1

β∗
kijdhXkjt + εit (5.27)

MCI Model:

s∗it = α1 +
m∑

j=2

α′
jdj +

m∑

j=1

K∑

k=1

m∑

h=1

β∗
kijdh logXkjt + εit (5.28)

where s∗it is the log-centered value of sit, the share of brand i in period
t. Variable dj is the usual brand dummy variable, but its value changes

depending on where it is used in the above equation. In the first sum-
mation, dj = 1 if j = i, and dj = 0 otherwise; in the second summation,

dh = 1 if h = j, and dh = 0 otherwise. It must be pointed out that
β∗

kij in models (5.27 – 5.28) are not the same as parameter βkij in model
(5.26), but a deviation of the form

β∗
kij = βkij − β̄k.j

where β̄k.j is the arithmetic mean of βkij over all brands (i = 1, 2, . . . , m).
But it may be shown that the estimated values of β∗

kij’s are sufficient

for computing the cross elasticities. Recall from Chapter 3 that the
elasticities and cross elasticities of brand i’s share with respect to a

change in the kth variable for brand j is given by
MCI Model:

esi.j
= βkij −

m∑

h=1

shβkhj

31McGuire, Timothy W., Doyle L. Weiss & Frank S. Houston [1977], “Consistent
Multiplicative Market Share Models,” in Barnett A. Greenberg & Danny N. Bellenger
(editors), Contemporary Marketing Thought. 1977 Educators Proceedings (Series #
41), Chicago: American Marketing Association.
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MNL Model:

esi.j
= (βkij −

m∑

h=1

shβkhj)Xkj .

Take the MCI version, for example. Substitute β∗
kij for βkij in the above

equation.

β∗
kij −

∑m
h=1 shβ∗

khj = (βkij − β̄k.j) −
∑m

h=1 sh(βkhj − β̄k.j)

= βkij −
∑m

h=1 shβkij − β̄k.j + β̄k.j

= esi.j

since the sum of sh over all brands is one. Thus the knowledge of the

β∗
kij’s is sufficient to estimate esi.j

for both the MCI-type and MNL-type
cross-effects models.

Let us apply the regression model proposed by McGuire et al. to the
illustrative data in Table 5.1. Since the data necessary for estimation

involve 56 variables (including the intercept term), no table of data set-
up is shown. Only the estimation results are given in Table 5.11. The

model was estimated without the intercept. The notation for indepen-
dent variables, LPiDj, where i and j are appropriate numbers, indicates

the effect of log(price) of the ith brand on brand j’s market share. There
is a warning that the model is not full rank , because there are only
four observations for brand 5 with a positive market share. Direct-effect

parameters, LPiDi’s, for brand 1 through 4 are negative and statisti-
cally significant, and others are non-significant. Cross-effect parameters

are mostly positive and/or statistically non-significant, but one of them,
LP7D6, is negative and significant. Although we should refrain from

making generalizations from this one set of data, it is perhaps justified
to say that, as we move toward more complex models, the limitations of

the test data set have become obvious. The number of observations is
too small to provide one with stable parameter estimates. Furthermore,

there seem to be other factors than price which affect market shares of
margarine in this store. It is desirable then to obtain more data, espe-
cially from more than one store, along with the information on marketing

variables other than price.
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Table 5.11: Regression Results for Cross-Effects Model (MCI)

Model: MODEL1
Note : no intercept in model. R-square is redefined.
Dep Variable: LSHARE

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F

Model 52 92.58365 1.78045 8.451 0.0001
Error 32 6.74182 0.21068
U Total 84 99.32547

Root MSE 0.45900 R-Square 0.9321
Dep Mean –0.00000 Adj R-Sq 0.8218

C.V. –7.89278E+17

NOTE : Model is not full rank. Least-squares solutions for the
parameters are not unique. Some statistics will be
misleading. A reported DF of 0 or B means that the
estimate is biased. The following parameters have been
set to 0, since the variables are a linear combination
of other variables as shown.

LP4D5 = +2.9223*D5 + 0.9531*LP1D5 + 0.7226*LP2D5 – 0.2564*LP3D5
LP5D5 = +5.8144*D5 – 0.2300*LP1D5
LP6D5 = +6.3121*D5 – 0.2992*LP1D5 – 0.7777*LP2D5 + 0.7946*LP3D5
LP7D5 = +5.2704*D5 + 0.1566*LP1D5 – 0.0181*LP2D5 – 0.2200*LP3D5

Parameter Estimates

Parameter Standard T for H0

Variable DF Estimate Error Parm=0 Prob> |T |

D1 1 73.924694 46.10070856 1.604 0.1186
D2 1 –38.091548 46.10070856 –0.826 0.4148
D3 1 38.942488 46.10070856 0.845 0.4045
D4 1 –79.689368 64.73512217 –1.231 0.2273
D5 B –52.022706 14.10815828 –3.687 0.0008
D6 1 59.130760 69.49275660 0.851 0.4012
D7 1 –17.793812 46.10070856 –0.386 0.7021
LP1D1 1 –5.096306 1.97465203 –2.581 0.0146
LP2D1 1 –0.365029 2.43911085 –0.150 0.8820
LP3D1 1 1.507052 2.27537629 0.662 0.5125
LP4D1 1 –2.353595 1.89200824 –1.244 0.2225
LP5D1 1 0.503063 0.70624068 0.712 0.4814
LP6D1 1 –6.100657 3.98554609 –1.531 0.1357
LP7D1 1 –2.894448 4.25472197 –0.680 0.5012
LP1D2 1 –0.252472 1.97465203 –0.128 0.8991
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Parameter Estimates

Parameter Standard T for H0

Variable DF Estimate Error Parm=0 Prob> |T |
LP2D2 1 –8.625451 2.43911085 –3.536 0.0013
LP3D2 1 2.107563 2.27537629 0.926 0.3613
LP4D2 1 3.041118 1.89200824 1.607 0.1178
LP5D2 1 0.800421 0.70624068 1.133 0.2655
LP6D2 1 1.336924 3.98554609 0.335 0.7395
LP7D2 1 9.615896 4.25472197 2.260 0.0308
LP1D3 1 –0.128008 1.97465203 –0.065 0.9487
LP2D3 1 1.150772 2.43911085 0.472 0.6403
LP3D3 1 –6.671369 2.27537629 –2.932 0.0062
LP4D3 1 –0.446255 1.89200824 –0.236 0.8150
LP5D3 1 0.378551 0.70624068 0.536 0.5957
LP6D3 1 –0.622859 3.98554609 –0.156 0.8768
LP7D3 1 –1.518813 4.25472197 –0.357 0.7235
LP1D4 1 –1.081137 2.35763232 –0.459 0.6496
LP2D4 1 6.997517 3.37627497 2.073 0.0463
LP3D4 1 –3.559763 3.99419070 –0.891 0.3795
LP4D4 1 –6.089339 1.89510791 –3.213 0.0030
LP5D4 1 0.194514 0.74768568 0.260 0.7964
LP6D4 1 12.210535 7.30809600 1.671 0.1045
LP7D4 1 7.680597 4.90866219 1.565 0.1275
LP1D5 B 6.205448 2.34288476 2.649 0.0124
LP2D5 B 3.608572 3.17368514 1.137 0.2640
LP3D5 B 0.569965 3.76236952 0.151 0.8805
LP4D5 0 0 0.00000000 . .
LP5D5 0 0 0.00000000 . .
LP6D5 0 0 0.00000000 . .
LP7D5 0 0 0.00000000 . .
LP1D6 1 3.523658 2.50575576 1.406 0.1693
LP2D6 1 0.112065 3.39656633 0.033 0.9739
LP3D6 1 –0.322265 4.07062686 –0.079 0.9374
LP4D6 1 1.837399 2.12068866 0.866 0.3927
LP5D6 1 1.098908 0.83529373 1.316 0.1977
LP6D6 1 –1.221249 7.39266721 –0.165 0.8698
LP7D6 1 –17.414894 5.82079344 –2.992 0.0053
LP1D7 1 0.104280 1.97465203 0.053 0.9582
LP2D7 1 1.630654 2.43911085 0.669 0.5086
LP3D7 1 2.086093 2.27537629 0.917 0.3661
LP4D7 1 1.615467 1.89200824 0.854 0.3995
LP5D7 1 –0.313301 0.70624068 –0.444 0.6603
LP6D7 1 –2.643566 3.98554609 –0.663 0.5119
LP7D7 1 1.060157 4.25472197 0.249 0.8048
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5.8 A Multivariate MCI Regression Model

It should be pointed out that the parameter estimates of Table 5.11 may
be obtained by applying a simple regression model of the following form

to the data for each brand separately.

log(s∗it) = αi +
∑m

j=1 βpij log(Pjt) + εit (i = 1, 2, . . . , m)(5.29)

In the above equation, αi is simply the intercept term for brand
i. The parameters thus estimated are identical to those in Table 5.11,

although the significance level of each parameter is usually different from
the one in Table 5.11, because the t-statistic and associated degrees of

freedom are not the same. If one wishes only parameter estimates, model
(5.26) is simpler to calibrate than model (5.13).32

The fact that (5.29) may be used to estimate the parameters of (5.26)
has an extremely important implication. Note that, in estimating (5.29),

the data for every brand involve the same set of independent variables,
log(P1t), log(P2t), . . . , log(Pmt), plus an intercept term. One may sum-

marize model (5.29) for m brands in the following multivariate regression
model.

Y = XB + E (5.30)

where:

Y = the T × m matrix with elements {log(s∗it)} (t = 1, 2, . . . , T ; i =

1, 2, . . . , m)

X = the T × (1 + m × K) matrix (J|X1|X2| . . . |XK)

J = the T × 1 vector (111 . . .1)′

Xk = the T × m matrix with elements {log(Xkit)} (t = 1, 2, . . . , T ;
i = 1, 2, . . . , m)

B = the (1 + m × K) × m matrix (B1|B2| . . . |Bm)

Bi = (αi|β1i1 . . .β1im|β2i1 . . . β2im| . . . |βKi1 . . . βKim)′

E = the T×m matrix of elements {εit} (t = 1, 2, . . . , T ; i = 1, 2, . . . , m).

32If we replace log(Pjt) with Pjt, the corresponding MNL model can be estimated.
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Recall our assumptions for the specification-error term are still appli-
cable to the error term, εit, in the above model. It is well known that

under our assumptions on the error term, the OLS procedure, applied
to each column of Y in (5.30) separately, yields the best linear-unbiased

estimates (BLUE) of the parameters of B.33 In other words, it is not
necessary to resort to the GLS procedure to obtain minimum-variance

estimates of a cross-effects model such as (5.27) or (5.28).

This fact, combined with the availability of equation (5.29) for brand-
by-brand estimation, reduces the task of estimating the parameters of
a cross-effects model and increases its usefulness as a market-diagnostic

tool. When one has a sufficient number of observations (that is, T >
1+m×K), it is perhaps best to estimate a cross-effects model first, and

then, after examining the pattern of estimated coefficients, determine if
a simpler model, such as the simple attraction model or a differential-

effects model, is adequate. When the number of observations is barely
sufficient for a cross-effects model, one may decide to adopt a strategy

to estimate a full cross-effects model first, and then decide to restrict
some elements of the B matrix (the parameter matrix) to be zero (cf.

Carpenter, Cooper, Hanssens, & Midgley [1988]). In this case, however,
the OLS procedure is not applicable and a GLS procedure will have to
be used.

5.9 Estimation of Category-Volume Models

So far we have considered the various techniques which may be used to

estimate the parameters of market-share models, but the forecasting of
brand sales volumes requires more than the knowledge of market shares.

Because the sales volume of a given brand in a period is a product of
the brand’s share and (total) category sales volume for the period, one

needs the forecast of category sales volumes.34

In this section we deal with the estimation of the parameters of
category-volume models. Compared with the market-share estimation,
the modeling for category sales volumes is a more straightforward ap-

plication of econometric techniques. The illustrative data in Table 5.1
include the average daily sales volumes of margarine for this store. We

33See, for example, Finn, Jeremy D. [1974], A General Model for Multivariate Anal-

ysis , New York: Holt, Rinehart & Winston.
34Hereafter we will use category volume instead of industry sales volume , since the

former fits better in the context of stores and market shares.
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will use these data to show some examples of category-volume models.
In this particular data set, brand price is the only marketing variable.

We hypothesize that if the overall price level is low, the total volume
will be high. We also hypothesize that if sales are extremely high in one

week, the sales in the following weeks should be low because the store
customers have not used up their stock. In order to represent those two

hypotheses, we propose the following model.

Qt = a + bQt−1 + c log P̃t + ut (5.31)

where:

Qt = the category volume (in equivalent units) in period t

P̃t = the average price level in period t

ut = an error term

a, b, c = parameters to be estimated.

We let the geometric mean of prices in a period be P̃t. The following is
the estimation result.

Qt = 508.8 −0.4652Qt−1 −2.5116 log P̃t

(4.172) (−1.681) (−3.620)

R-Square = 0.5764

T-values are in the parentheses directly below the corresponding pa-

rameter estimates. The fit of the model is acceptable, judging from the
R2-value of 0.58 . The estimated parameters and their t-values bear out

our initial guess that the average price level in the week and the sales
volume in the preceding week are influential in determining the category
volume.

There is another line of thought concerning the effect of price on
category volumes that the prices of different brands have differential

effects on category volumes. A brand’s price reduction may increase
its share, but may not affect category volumes, while another brand’s

price reduction may increase both its share and category volumes. To
incorporate differential effects of brand price, we propose the following

model.

Qt = a + bQt−1 +
m∑

i=1

ci logPit + ut (5.32)

where the ci’s are the differential price-effect parameters. The estimation
results for this model are given below.
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Qt =252.62 −0.4947Qt−1 −0.1646 logP1t−0.4799 logP2t−0.06799 logP3t

(1.982)(−2.952) (−0.795) (−2.882) (−0.286)

−0.1881 logP4t−0.5646 logP5t−0.2727 logP6t+1.0631 logP7t

(−0.756) (−5.862) (−0.555) (2.218)

R-Square = 0.9581

The fit of the model is much improved. Brand 2 and 5 have significant
effects on category volumes indicating that when those brands cut prices

the customers to this store purchase more than their usual amounts, and
that the following week’s total volume suffers as a consequence. Note

that the brand sales elasticity with respect to price, which measures the
overall impact of brand i’s price on its sales volume, is decomposed into

two components:

eQi.Pi
= Category-Volume Elasticity + Share Elasticity.

For example, if we assume the differential-effects model, then

eQi.Pi
= ci + βpi

(1 − si)

where ci is in model (5.32) and βpi
is estimated by one of the models

(5.14 – 5.17).

With the R2-value of 0.96, equation (5.32) should give reasonably
good estimates of category volumes. The positive sign of the estimated

parameter for logP7t poses a theoretical problem, but it probably reflects
the effects of some marketing activities within the store which are not

included in the model. As a forecasting model for category volume, this
model should be used as it is.

Model (5.32) is in the form of a distributed-lag models. It is known

that the ordinary-least squares procedure applied to (5.32) yields biased
estimates of the model parameters. If there are an adequate number of
observations, it is recommended to use time-series analysis procedures

for parameter estimation. Weekly data produce a sufficient number of
observations in two years for a time-series analysis model. If the number

of observations is less than 50, however, it is perhaps best to use the
OLS procedure.

These simplest category-volume models are linear in the effects of

previous category volume while being linear in the logs of prices. As
we incorporate marketing variables other than price, it is advisable to
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postulate more general, fully interactive models such as:

Qt = exp(a + ut)Q
b
t−1

m∏

j=1

P
cj

j

K∏

k=2

exp(bkjXkjt) . (5.33)

The reduced form of such a model may be characterized as being a log-
log model in the effects of price and previous category volume, and log-

linear in the other marketing variables (such as newspaper features, in-
store displays and other marketing instruments which may be binary
variables). This general form will be used with the coffee-market example

developed in section 5.12.

5.10 Estimation of Share-Elasticities

In Chapter 6 we deal with the market-structure analysis based on the

factor analysis of market-share elasticities. The reader may recall that
there are two types of market-share elasticities, namely, point- and arc-

share elasticities. Since the elasticities obtainable in practice are arc
elasticities, one may think of factor-analyzing arc elasticities to investi-

gate the structure of the market and competition. Unfortunately, this is
not at all feasible.

Recall the definition of an arc elasticity for variable Xk.

esi
=

∆si

∆Xki

xki

si

∆si in the above definition is not the total change in si, but the change

corresponding to the change in Xki, ∆Xki. We have no means of separat-
ing the effects of various marketing variables on market shares, unless, of

course, we apply some models to observed market shares. Indeed it is the
main purpose of the models discussed in this book to identify the effects

of marketing variables. Thus, in order to estimate share-elasticities spe-
cific to a marketing variable, we propose first to estimate the parameters

of a market-share model from a data set (i.e., brand shares and market-
ing variables), and then use theoretical expressions for point elasticities

(see Chapter 3) for the relevant model to obtain elasticities estimates.
A numerical example may clarify this procedure. When we applied

the raw-score attraction model to the margarine data in Table 5.1, we

have obtained a price-parameter estimate of –8.337. If a brand’s share
is 0.2, then the point-elasticity estimate is given by −8.337× (1−0.2) =

−6.67. Although we are unable to estimate arc elasticities in this manner,
point-elasticity estimates will serve as approximations for arc elasticities.
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5.11 Problems with Zero Market Shares

Since the dependent variable in log-linear regression is the logarithm of
either market shares or the numbers of units sold, it is impossible to
compute the value of the dependent variable if observed market shares

or numbers of units are zero. In any data collection procedure one may
observe a zero market share or number of units sold for some brand-

period combination. There are two procedures for handling those data
sets which contain zero market shares.

The first is to assign some arbitrarily small values (0.001, say) to zero
market shares. But this procedure amounts to assigning a large negative

value to log 0, and tends to bias the estimated parameter values. (The
smaller the assigned value, the greater the absolute values of estimated

parameters.)

The second procedure is to delete from the data set those brand-

period combinations for which observed market-shares are zero.35 Though
this procedure may seem arbitrary at first glance, it has some logic of its

own. First, if a brand were not bought in a certain period, that would be
sufficient basis to infer that the brand was not in the consumers’ choice
set. Second, since one is usually more interested in estimating accu-

rately the behavior of those brands which command large shares, it may
be argued that one need not bother with those brands which often take

zero market shares. Third, that zero market shares are not usable for
estimation is not a problem limited to log-linear regression procedures.

Consider, for example, the case in which the share estimate for brand
i in period t is based on the number of consumers who purchased that

brand, nit (i = 1, 2, . . . , m). Assuming that numbers {n1t, n2t, . . . , nmt}
are generated by a multinomial process (see section 5.1.1 on maximum-

likelihood estimation), one may wish to use a maximum-likelihood pro-
cedure for estimating parameters of attraction models. Note, however,
that those observations for which nit = 0 do not contribute at all to the

likelihood function (5.2). In a sense, the maximum-likelihood procedure
ignores all brand-period combinations for which nit = 0.

There are two drawbacks to the deletion of zero market shares. One
is the reduction of the degree of freedom due to the deletion. But this

drawback may be compensated by a proper research design in that, if
the number of brands per period is reduced by the deletion, the num-

35Young, Kan H. & Linds Y. Young [1975], “Estimation of Regressions Involving
Logarithmic Transformations of Zero Values in the Dependent Variables,” The Amer-

ican Statistician, 29 (August), 118–20.
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ber of periods (or areas) may be increased to obtain an adequate degree
of freedom. The second drawback is that the estimated parameters are

somewhat biased (in the direction of smaller absolute values). But, we
believe that the biases which are introduced by this procedure are far

less than those which are introduced by replacing zero shares by an arbi-
trarily small constant. It may be added that we found in our simulation

studies that the true parameter values lie between those estimated af-
ter deleting zero-share observations and those estimated after replacing

zero shares by an arbitrary constant. This finding leads us to consider
another somewhat arbitrary, and so far untested, procedure, which adds

a small constant to all brand-period combinations, disregarding if they
are zero share or not. In other words, we suggest that the dependent
variable, log sit, is to be replaced by log(sit + c), where sit is the share

of brand i in period t and c is the arbitrary constant. We found that,
if one selects the value of c properly, the estimated parameters are free

of biases which other two procedures tend to create. The appropriate
value of c seems to vary from one data set to the next. So far we have

been unable to find a logic to determining the correct value of c that is
applicable to a particular data set. Here we only indicate that a fruitful

course of research may lie in the direction of this estimation procedure.

Zero market shares create particularly difficult problems for the mul-

tivariate regression in (5.30). The missing market share for one brand
may cause the observation to be deleted from all the regressions. In cases

such as this, when it is particularly important to have all the dependent
measures present, the EM algorithm discussed by Malhotra36 could be

useful.

When imputing values which are missing in the data one should al-

ways ask why are the data missing? The imputation literature37 treats
data missing-at-random (MAR), missing-completely-at-random (MCAR),

and missing-by-unknown-mechanisms (MBUM), but rarely do these con-
ditions fit the zero market shares in POS data. If a brand simply is not

distributed in one or more of the retail outlets, neither MAR, MCAR, nor
MBUM assumptions are appropriate. Even if the brand is distributed,

it is not always possible to tell if the zero market share results from
an out-of-stock condition or simply from no sales. But, in either case,

36Malhotra, Naresh [1987], “Analyzing Market Research Data with Incomplete In-
formation on the Dependent Variable,” Journal of Marketing Research , XXIV (Febru-
ary), 74–84.

37For an excellent recent treatment see Little, Roderick J. A. & Donald B. Rubin
[1987], Statistical Analysis with Missing Data . New York: John Wiley & Sons, Inc.
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these conditions are neither random or by unknown mechanisms. One
clue comes from the other data associated with a brand. If price and

promotional variables are present for the zero-market-share brand, one
can assume the brand is distributed, but nothing more. The problem

concerns only imputing the value of the dependent measure. If price and
promotional measures are also missing, the imputation problem is more

severe. Widely differing patterns of distribution would greatly compli-
cate the multivariate regression in (5.30). In such cases it is probably

simpler to delete the missing observations in the market-share model,
and use the method discussed in section 5.12 for estimating cross effects.

While simply deleting the observation is an acceptable solution to
the problem of differing patterns of distribution in market-share mod-
els, it is not an acceptable approach to this problem in category-volume

models. Zero market share isn’t the issue, since the dependent measure
is the (log of) total sales volume. But missing values for prices are par-

ticularly worrisome, since we cannot take the log of a missing value. In
the market-share model for POS data, there is an observation for each

brand in each store in each week. For the corresponding category-volume
model there is just an observation for each store in each week. The mea-

sures in an observation reflect the influence of each brand’s prices and
promotional activity on total volume. If we were to delete the whole

observation whenever a single brand was not in distribution, widely dif-
fering distribution patterns over stores could result in the deletion of all
observations. We wish to minimize the influence that the missing value

has on the parameter corresponding to that measure, but allow the other
measures in the observation to have their normal influence in parameter

estimation.
While an developing an algorithm to minimize the influence of miss-

ing prices is a worthwhile topic for future research, there is a simple ap-
proach for achieving a reasonable result in the interim. We merely need

to create brand-absence dummy variables, which would take a value of
one when then brand is absent and a value of one when present. If we

then replace the missing (log) price with a zero, the parameter of the
brand-absence measure show the penalty uniquely associated with not
distributing the brand. This approach will be illustrated in the next

section.
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5.12 The Coffee-Market Example

To illustrate the use of these estimation techniques on POS data, con-

sider the ground, caffeinated coffee market. Data, provided by Infor-
mation Resources, Inc., from BehaviorScan stores in two cities, report
price, newspaper feature, in-store display and store-coupon activity for

all brands. The small-volume, premium brands were aggregated into
an “All Other Branded” (AOB) category, and the small “Private La-

bel” (PL) brands were aggregated into an “All Other Private Label”
(AOPL) category. Consequently, twelve brands of coffee were analyzed:

Folgers, Regular Maxwell House, Maxwell House Master Blend, Hills
Bros., Chock Full O’Nuts, Yuban, Chase & Sanborne, AOB, PL 1, PL 2,

PL 3, and AOPL. For eighteen months, each week’s data for a brand were
aggregated over package weights, and over stores-within-grocery chains

in the two cities. These are aggregate data from stores, not discrete-
choice data from BehaviorScan consumer panels. Price for each brand
was aggregated into average price per pound, net of coupons redeemed.

Feature, display and coupon were represented as percent of volume sold
on promotions of each type to allow for aggregation over stores with

slightly differing promotional environments. The data were divided into
a year for calibration of the market-share model, and six months for

cross-validation. The average price and market share of each brand ap-
pear in Table 5.12.

5.12.1 The Market-Share Model

With four marketing instruments per brand the full cross-effects model
would have 587 parameters (4 × 12 × 12 + 11). To avoid estimating so

many parameters an asymmetric market-share model was estimated by
procedures similar to those discussed in Carpenter, Cooper, Hanssens,

and Midgley [1988].38 The distinctiveness of marketing efforts were in-
corporated by using exp(z-scores) for each marketing instrument. A
differential-effects model was estimated with a unique parameter for each

brand’s price, feature, display, and store coupons, and a brand-specific

38Carpenter et al. suggest forming dynamically weighted, attraction components to
deal with the lagged effects of marketing instruments. Chapter 3 discusses alternative
methods for specifying the dynamic components, but neither of these approaches was
used in this illustration. Store-week data are sufficiently disaggregate that they rarely
have the complex time-series properties dealt with in Carpenter et al., so that no
dynamically weighted, attraction components were needed.
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Table 5.12: Coffee Data — Average Prices and Market Shares

Average Average

Brand Price/lb. Share

Folgers $2.33 28.5
Maxwell House $2.22 24.2

Master Blend $2.72 7.8
Hills Bros. $2.13 4.3

Chock Full O Nuts $2.02 15.3
Yuban $3.11 0.2

Chase & Sanborne $2.34 0.3
All Other Branded $2.64 2.4

Private Label 1 $1.99 3.9
Private Label 2 $1.95 3.6

Private Label 3 $1.93 3.7
All Other Private Labels $1.95 5.7

intercept for the qualitative features of each brand using OLS proce-

dures. The brand-specific intercept which was closest to zero (PL 2)
was set to zero to avoid singularity. The residuals from this differential-

effects model were cross-correlated brand by brand with the transformed
contemporaneous explanatory variables for all other brands. The cross-

competitive effects which were significant in the residual analysis were
entered into the model.39

This specification approach leads to a generalized attraction model:

Ait = exp(αi + ε1i)
K∏

k=1

[exp(zkit)]
βki

∏

(k∗j∗)εCi

[exp(zk∗j∗t)]
βk∗ij∗

where αi is brand i’s constant component of attraction, ε1i is specification
error, βki is brand i’s market-response parameter on the kth marketing-

mix element, exp(zkit) is brand i’s attraction component for the kth

marketing-mix element (standardized over brands within a store-week),

Ci is the set of cross-competitive effects on brand i, exp(zk∗j∗t) is the
standardized attraction component of the cross-competitive influence of
brand j∗’s marketing-mix element k∗ on brand i, (k∗j∗)εCi, and βk∗ij∗

39The criteria for inclusion of a cross effect were that it had to be based on more
than 52 observations and the correlation had to be significant beyond the .05 level.
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is the cross-effect parameter for the influence of brand j∗’s attraction
component k∗ on brand i’s market share.

For the final model the residuals from the OLS estimation were used
to estimate the error variances for each brand. The weights for a re-

gression were formed as

wi =
1

(1− 1
m)σ̂i

.

These weights compensate for heteroscedasticity of error variances over

brands, but do not treat the possibility of nonzero error covariances. The
results for the calibration period of 52 weeks appear in Table 5.13.

The resulting model has an R2 of .93 with 140 parameters estimated
and 2,051 residual degrees of freedom (F 140

2051 = 181). Since the model

is estimated without an intercept, R2 is redefined as is noted on the re-
gression output. In models estimated without an intercept R2 is like the
congruence coefficient discussed in section 5.6. If the mean of the depen-

dent measure is equal to zero, the lack of an intercept doesn’t matter,
and R2 has the normal interpretation as the proportion of linearly ac-

countable variation in the reduced form of the dependent measure. The
dependent measure in the OLS-estimation phase does have a mean of

zero (and an R2 of .92) but rescaling by the weights affects the mean
of the dependent measure. So while it is obvious that the cross-effects

model fits extremely well, it is not strictly proper to interpret .93 as the
proportion of explained variation.40

We cross validate these models by combining the parameter values in
Table 5.13 with fresh data to form a single composite prediction variable,
and then correlate the predicted dependent measure with the actual

dependent measure for the new observations; 26 weeks of fresh data
were used in cross validation. The squared cross-validity correlation is

.85 using the parameters in Table 5.13. This is an excellent result for a
relationship that uses just one composite variable to predict over 1,000

observations (F 1
1012 = 5808). The OLS differential-effects model has a

squared cross-validity correlation of .79, indicating that the cross effects

do enhance the model in a stable manner.

40Because reweighting changes the interpretation of R2, to assess the incremental
contribution of the cross effects, it is simpler to compare the OLS differential-effects
model to the OLS cross-effects model. In this case the OLS differential-effects model
has an R2 of .82, so that the cross effects represent a substantial improvement over
the good-fitting differential-effects model.
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Table 5.13: Regression Results for Cross-Effects Model (MCI)
Coffee Data Base For Pittsfield And Marion Markets

Ground-Caffeinated Coffee Brands Only
MCI Regression

Model: Coffee
Dep Variable: LCSHARE Log-Centered Share

Analysis Of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 140 11556.72 82.55 181.54 0.01
Error 2051 932.62 0.45
U Total 2191 12489.34

Root MSE 0.67 R-Square 0.93
Dep Mean 0.18 Adj R-Sq 0.92

C.V. 383.34
Note: No intercept term is used. R-Square is redefined.

Parameter Estimates
Parm Std T For H0: Prob>

Variable DF Est Err Parm=0 |T |
Folg Intercept 1 2.54 0.17 15.07 0.01
Folg Price Z-Score 1 –0.96 0.07 –13.07 0.01
Folg Featv Z-Score 1 0.06 0.04 1.52 0.13
Folg Dispv Z-Score 1 0.16 0.05 3.56 0.01
Folg Coupv Z-Score 1 –0.13 0.05 –2.53 0.01
RMH Intercept 1 1.92 0.12 15.50 0.01
RMH Price Z-Score 1 –0.58 0.06 –10.02 0.01
RMH Featv Z-Score 1 0.00 0.03 0.12 0.91
RMH Dispv Z-Score 1 0.06 0.03 1.74 0.08
RMH Coupv Z-Score 1 0.11 0.04 2.92 0.01
MHMB Intercept 1 1.79 0.17 10.27 0.01
MHMB Price Z-Score 1 –0.24 0.07 –3.21 0.01
MHMB Featv Z-Score 1 0.19 0.04 5.33 0.01
MHMB Dispv Z-Score 1 0.22 0.05 4.79 0.01
MHMB Coupv Z-Score 1 –0.08 0.06 –1.43 0.15
HlBr Intercept 1 –0.50 0.11 –4.49 0.01
HlBr Price Z-Score 1 0.04 0.07 0.57 0.57
HlBr Featv Z-Score 1 0.48 0.05 8.96 0.01
HlBr Dispv Z-Score 1 0.23 0.05 4.57 0.01
HlBr Coupv Z-Score 1 1.52 0.19 7.97 0.01
CFON Intercept 1 0.61 0.11 5.37 0.01
CFON Price Z-Score 1 –1.33 0.09 –14.50 0.01
CFON Featv Z-Score 1 0.12 0.05 2.27 0.02
CFON Dispv Z-Score 1 –0.04 0.04 –0.94 0.35
CFON Coupv Z-Score 1 –0.22 0.07 –3.35 0.01
Yub Intercept 1 –0.15 0.21 –0.71 0.48
Yub Price Z-Score 1 –0.77 0.09 –8.70 0.01
Yub Featv Z-Score 1 0.21 0.21 0.98 0.33
Yub Dispv Z-Score 1 0.70 0.25 2.82 0.01
Yub Coupv Z-Score 1 0.15 0.22 0.70 0.49
CSIntercept 1 –0.42 0.17 –2.48 0.01
CSPriceZ − Score 1 –0.27 0.14 –2.01 0.05
CSFeatvZ − Score 1 –0.07 0.31 –0.22 0.83
CSDispvZ − Score 1 1.19 0.33 3.65 0.01
CSCoupvZ − Score 1 0.78 0.24 3.21 0.01
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Parameter Estimates, Continued
Parm Std T For H0: Prob>

Variable DF Est Err Parm=0 |T |
AOB Intercept 1 0.50 0.12 4.00 0.01
AOB Price Z-Score 1 –0.49 0.06 –8.28 0.01
AOB Featv Z-Score 1 –0.24 0.06 –3.75 0.01
AOB Dispv Z-Score 1 0.13 0.04 2.87 0.01
AOB Coupv Z-Score 1 0.16 0.09 1.84 0.07
PL1 Intercept 1 0.28 0.16 1.75 0.08
PL1 Price Z-Score 1 –1.07 0.09 –11.64 0.01
PL1 Featv Z-Score 1 –0.06 0.04 –1.47 0.14
PL1 Dispv Z-Score 1 –0.06 0.04 –1.62 0.10
PL1 Coupv Z-Score 1 0.03 0.03 0.79 0.43
PL2 Price Z-Score 1 –1.11 0.17 –6.68 0.01
PL2 Featv Z-Score 1 0.06 0.14 0.43 0.67
PL2 Dispv Z-Score 1 0.12 0.13 0.91 0.36
PL2 Coupv Z-Score 1 0.41 0.42 0.97 0.33
PL3 Intercept 1 –0.30 0.22 –1.36 0.17
PL3 Price Z-Score 1 –1.00 0.15 –6.53 0.01
PL3 Featv Z-Score 1 0.02 0.06 0.28 0.78
PL3 Dispv Z-Score 1 0.35 0.41 0.84 0.40
PL3 Coupv Z-Score 1 0.05 0.05 0.95 0.34
AOPL Intercept 1 0.25 0.15 1.68 0.09
AOPL Price Z-Score 1 –0.21 0.06 –3.47 0.01
AOPL Featv Z-Score 1 0.07 0.03 2.62 0.01
AOPL Dispv Z-Score 1 –0.04 0.05 –0.68 0.50
AOPL Coupv Z-Score 1 0.02 0.04 0.43 0.67
Crs Of RMH Price Effect On Folg 1 –0.27 0.07 –3.96 0.01
Crs Of MHMB Price Effect On Folg 1 –0.10 0.08 –1.29 0.20
Crs Of HlBr Price Effect On Folg 1 0.06 0.06 0.98 0.33
Crs Of CFON Price Effect On Folg 1 0.05 0.06 0.92 0.36
Crs Of Yub Price Effect On Folg 1 –0.32 0.06 –5.85 0.01
Crs Of AOB Price Effect On Folg 1 –0.31 0.06 –5.20 0.01
Crs Of RMH Featv Effect On Folg 1 –0.13 0.03 –3.75 0.01
Crs Of Yub Featv Effect On Folg 1 –0.04 0.18 –0.24 0.81
Crs Of RMH Dispv Effect On Folg 1 –0.09 0.04 –2.40 0.02
Crs Of MHMB Dispv Effect On Folg 1 0.12 0.05 2.72 0.01
Crs Of Yub Dispv Effect On Folg 1 0.01 0.21 0.04 0.97
Crs Of AOB Dispv Effect On Folg 1 0.02 0.04 0.44 0.66
Crs Of RMH Coupv Effect On Folg 1 0.03 0.04 0.68 0.50
Crs Of MHMB Coupv Effect On Folg 1 0.03 0.05 0.47 0.64
Crs Of HlBR Coupv Effect On Folg 1 1.04 0.17 6.06 0.01
Crs Of Yub Coupv Effect On Folg 1 0.30 0.18 1.66 0.10
Crs Of AOPL Coupv Effect On Folg 1 –0.06 0.04 –1.70 0.09
Crs Of Folg Price Effect On RMH 1 –0.10 0.06 –1.54 0.12
Crs Of Yub Price Effect On RMH 1 –0.05 0.04 –1.31 0.19
Crs Of AOB Price Effect On RMH 1 –0.22 0.04 –4.83 0.01
Crs Of AOPL Price Effect On RMH 1 0.17 0.04 4.63 0.01
Crs Of Folg Featv Effect On RMH 1 –0.00 0.03 –0.09 0.93
Crs Of Yub Featv Effect On RMH 1 0.19 0.17 1.12 0.26
Crs Of AOB Featv Effect On RMH 1 –0.12 0.05 –2.24 0.03
Crs Of Folg Dispv Effect On RMH 1 –0.04 0.04 –0.92 0.36
Crs Of HlBr Dispv Effect On RMH 1 –0.08 0.03 –2.37 0.02
Crs Of Yub Dispv Effect On RMH 1 –0.49 0.20 –2.46 0.01
Crs Of HlBr Coupv Effect On RMH 1 0.31 0.15 2.09 0.04
Crs Of CFON Coupv Effect On RMH 1 –0.05 0.05 –0.87 0.39
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Parameter Estimates, Continued
Parm Std T For H0: Prob>

Variable DF Est Err Parm=0 |T |
Crs Of Yub Coupv Effect On RMH 1 0.54 0.18 3.01 0.01
Crs Of AOB Coupv Effect On RMH 1 0.20 0.07 2.76 0.01
Crs Of Yub Price Effect On MHMB 1 –0.10 0.05 –2.10 0.04
Crs Of AOB Price Effect On MHMB 1 –0.29 0.06 –4.92 0.01
Crs Of AOPL Price Effect On MHMB 1 0.38 0.04 9.73 0.01
Crs Of RMH Featv Effect On MHMB 1 –0.04 0.03 –1.27 0.21
Crs Of Yub Featv Effect On MHMB 1 0.52 0.17 3.02 0.01
Crs Of AOB Featv Effect On MHMB 1 –0.12 0.06 –2.19 0.03
Crs Of HlBr Dispv Effect On MHMB 1 –0.09 0.03 –2.69 0.01
Crs Of Yub Dispv Effect On MHMB 1 –0.43 0.22 –2.01 0.04
Crs Of AOPL Dispv Effect On MHMB 1 –0.06 0.05 –1.01 0.31
Crs Of RMH Coupv Effect On MHMB 1 0.08 0.04 2.19 0.03
Crs Of HlBr Coupv Effect On MHMB 1 0.50 0.16 3.04 0.01
Crs Of Yub Coupv Effect On MHMB 1 0.42 0.16 2.56 0.01
Crs Of AOB Coupv Effect On MHMB 1 0.14 0.07 1.89 0.06
Crs Of AOPL Coupv Effect On MHMB 1 –0.00 0.04 –0.14 0.89
Crs Of MHMB Price Effect On HlBr 1 0.19 0.07 2.71 0.01
Crs Of AOB Price Effect On HlBr 1 0.29 0.05 5.82 0.01
Crs Of MHMB Featv Effect On HlBr 1 –0.05 0.07 –0.78 0.44
Crs Of MHMB Dispv Effect On HlBr 1 –0.00 0.08 –0.02 0.99
Crs Of CFON Dispv Effect On HlBr 1 0.03 0.04 0.78 0.43
Crs Of AOB Dispv Effect On HlBr 1 –0.04 0.05 –0.76 0.44
Crs Of RMH Price Effect On CFON 1 0.31 0.08 3.70 0.01
Crs Of MHMB Price Effect On CFON 1 –0.69 0.06 –10.81 0.01
Crs Of HlBr Price Effect On CFON 1 –0.17 0.07 –2.48 0.01
Crs Of Folg Featv Effect On CFON 1 0.10 0.06 1.72 0.09
Crs Of AOB Featv Effect On CFON 1 0.01 0.06 0.11 0.91
Crs Of AOB Dispv Effect On CFON B –0.03 0.05 –0.70 0.49
Crs Of Folg Coupv Effect On CFON 0 –0.07 0.08 –0.90 0.37
Crs Of MHMB Coupv Effect On CFON 1 –0.63 0.14 –4.39 0.01
Crs Of HlBr Coupv Effect On CFON 1 0.01 0.19 0.05 0.96
Crs Of Folg Price Effect On Yub 1 0.10 0.06 1.58 0.12
Crs Of Folg Dispv Effect On Yub 1 –0.12 0.08 –1.48 0.14
Crs Of MHMB Dispv Effect On Yub 1 0.49 0.10 4.92 0.01
Crs Of Folg Coupv Effect On Yub 1 –0.07 0.06 –1.27 0.21
Crs Of Folg Price Effect On AOB 1 0.52 0.10 5.43 0.01
Crs Of RMH Price Effect On AOB 1 0.94 0.09 10.61 0.01
Crs Of HlBr Price Effect On AOB 1 0.35 0.08 4.36 0.01
Crs Of CFON Price Effect On AOB 1 –0.00 0.08 –0.03 0.98
Crs Of Yub Price Effect On AOB 1 0.33 0.05 6.06 0.01
Crs Of AOPL Price Effect On AOB 1 0.91 0.07 13.87 0.01
Crs Of Folg Featv Effect On AOB 1 0.01 0.04 0.25 0.80
Crs Of Yub Featv Effect On AOB 1 0.09 0.05 1.74 0.08
Crs Of Folg Dispv Effect On AOB 1 –0.14 0.05 –2.88 0.01
Crs Of Yub Dispv Effect On AOB 1 –0.18 0.06 –2.97 0.01
Crs Of RMH Coupv Effect On AOB 1 0.15 0.04 3.32 0.01
Crs Of CFON Coupv Effect On AOB 1 –0.19 0.07 –2.91 0.01
Crs Of Yub Coupv Effect On AOB 1 0.06 0.13 0.46 0.65
Crs Of Folg Price Effect On AOPL 1 –0.21 0.09 –2.30 0.02
Crs Of RMH Price Effect On AOPL 1 –0.48 0.07 –6.66 0.01
Crs Of MHMB Price Effect On AOPL 1 0.09 0.03 2.66 0.01
Crs Of AOB Price Effect On AOPL 1 –0.08 0.06 –1.33 0.18
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These results differ in minor fashion from those previously summa-
rized by Cooper.41 There are two sources of difference. First, the article

is based on the OLS results. Second, the brand-specific effects estimated
in that article are based on z-scores, rather than the more traditional

brand-specific intercepts adopted in this book. Only the parameter val-
ues for the brand-specific effect are substantially affected by the differ-

ences between the two approaches. A brand-by-brand summary follows.

Folgers has the largest brand-specific intercept indicating a relatively
high baseline level of attraction. If all brands were at the market average

for prices and all other marketing instruments, so that only the differ-
ences in brand intercepts were reflected in the market share, Folgers
would be predicted to capture 36% of the market. This is what we will

call a baseline market share.42 Folgers has a very strong and significant
price parameter. Being priced above the market average will sharply

reduce its baseline market share, while price reductions will sharply in-
crease share. There is a positive but insignificant feature effect. There is

a strong positive effect for in-store displays. The effect of store coupons
is negative and statistically extreme. While we would normally expect

store-coupon promotions to have a positive effect, we should note two
things. First, the average number of pounds-per-week of Folgers sold on

store coupons is 1,175 compare to 2,018 pounds sold on in-store displays
and 1,397 pounds sold per week of newspaper features. So there is some
indication in these data that this might not be a spurious coefficient.

Second, the price measure is net of coupons redeemed. While this re-
flects the influence of manufacturers coupons as well as store coupons,

it does mean that some of the benefits of store coupons are folded into
the price effect. There are four significant cross-price effects impacting

Folgers. Regular Maxwell House, Maxwell House Master Blend, Yuban,
and the AOB category all have significantly less price impact on Folgers

than reflected in the differential-effects model. Folgers has significantly
more of a price effect on the AOB category and significantly less price

41Cooper, Lee G. [1988b], “Competitive Maps: The Structure Underlying Asym-
metric Cross Elasticities,” Management Science , 34, 6 (June), 707-23.

42Baseline shares can differ substantially from the average shares reported in Ta-
ble 5.12. Average shares are a straightforward statistical concept, but baseline shares
reflect something of a brand’s fundamental franchise, all other things being equal. But
all other things are rarely equal. Market power can come from the way a brand uses
its marketing instruments (i.e., its promotion policy) as well as from its fundamental
franchise. Baseline share figures are reported for each of the brands. These can be
usefully compared to the average-share figures, but should not be thought of as a
prediction of long-run market share.
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impact on the AOPL brands than would otherwise be expected. For fea-
tures, only the increased competitive impact of Regular Maxwell House

is significant. For displays, Regular Maxwell House has more of an effect,
while Master Blend has less of an effect than otherwise expected. Fol-

gers’ displays exert more pressure on the AOB category than otherwise
expected. Hills Bros. coupons put significantly less pressure on Folgers

than expected from differential effects alone.

Regular Maxwell House also has a strong, positive brand-specific in-
tercept, which translates into a baseline market share of 19%. It has

significant price and coupon effects. Regular Maxwell House has sig-
nificant competitive price effects on Chock Full O’Nuts and the AOB

category, but it exerts significantly less competitive pressure on Folgers
and AOPL with its price. AOPL has a significant competitive price

effect, while the AOB category exerts significantly less price pressure.
RMH features attack Folgers, and features for the AOB category exert

significant pressure on RMH. RMH displays exert significant competitive
pressure on Folgers, while Hills Bros. and Yuban attack RMH with their

displays. RMH coupons have less competitive effect on Master Blend and
the AOB category than would otherwise be expected, and coupons for
Hill Bros., Yuban and the AOB category have significantly less impact

on RMH in return.

Maxwell House Master Blend has a significant intercept which trans-

lates into a baseline share of 17%. Price, feature, and display effects
are significant in the expected directions. The coupon effect is insignifi-

cant and wrong signed. Master Blend receives more price pressure from
AOPL, but less from Yuban and the AOB category than would other-

wise be expected. In return Master Blend exerts more price pressure on
Hills Bros. and AOPL, and less pressure on CFON and Folgers than the
differential-effects models could reflect. AOB features are more competi-

tive and Yuban features are less competitive due to their significant cross
effects on Master Blend. Master Blend displays are less competitive with

both Folgers and Yuban than otherwise expected, while displays for Hills
Bros. and Yuban exert extra pressure on Master Blend. Store coupons

for Regular Maxwell House, Hills Bros. and Yuban all have less effect
than otherwise expected. Store coupons for Master Blend do exert pres-

sure on Chock Full O’Nuts.

Hills Bros.’ intercept translates into a baseline share of 2%. It shows
strong effects for features, displays, and coupons. The self-price effect

is not significant, but it does have a significant competitive price effect
on the AOB category. It has less price effect on CFON than otherwise
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expected. Master Blend and the AOB category exert stable competitive
price effects on Hills Bros. There are no feature cross effects, but Hill

Bros. has significant competitive display effects on Regular Maxwell
House and Maxwell House Master Blend (as already noted).

Chock Full O’Nuts has a small baseline share (5%), but strong price

and feature effects. Its use of these instruments helps it maintain the
third largest average market share (15%). The Regular Maxwell House

has a strong, competitive price effect on Chock Full O’Nuts. But both
Master Blend and Hills Bros. exert significantly less price pressure on

CFON. There are no significant feature or display cross effects, but
CFON’s store coupons exert extra pressure on the AOB category and

Master Blend’s store coupons exert extra pressure on CFON.

Yuban has a baseline share of 2%, but its high price results in a much
smaller average share. It has significant price and display effects. Yuban

exerts less price pressure on Folgers and Master Blend, but more pressure
on the AOB category than otherwise expected. Features for Yuban have

less impact on Master Blend than reflected in simpler models. Yuban dis-
plays have significant competitive effect on both Maxwell House brands
and the AOB category, while Master Blends displays are less competitive

in return. The display effect of both Maxwell House brands is reversed
in the only two coupon effects concerning Yuban. This is such a small

brand in these markets that it probably should have been folded into the
AOB category. Its stronger position on the West Coast may have led

the authors astray.

Chase & Sanborne also has a baseline share of 2%. Its average share
is even less, due to its high price and the infrequency of promotions. Its

price, display, and coupon effects are statistically significant. There are
no cross effects involving Chase & Sanborne.

The premium brands in the AOB category collectively have a baseline

share of 5%. There are strong price and display effects, but the feature
effect is statistically extreme in the expected direction. With aggregates

of brands such as AOB, it may be hard to get a clear signals from all
the parameters. AOB exerts additional competitive price pressure on

Hills Bros., but seems to complement Folgers and both Maxwell House
brands. The AOB category receives extra price pressure from Folgers,
Regular Maxwell House, Hills Bros., Yuban, and AOPL. Features for

the AOB category have an extra competitive effect on both Maxwell
House brands. Store coupons for AOB and Regular Maxwell House have

less effect on each other than otherwise expected, but store coupons for
CFON do hurt the AOB category.
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The private-label brands (PL 1, PL 2, PL 3 and AOPL) collectively
have a baseline share of 13%. All four have significant price effects,

and AOPL has a significant feature effect. AOPL exerts price pressure
on both Maxwell House brands and the AOB category. While Master

Blend returns the press, both Folgers and Regular Maxwell House are
less price competitive than otherwise expected. There are no cross effects

for features, displays, or store coupons for the private label brands.43

That price is a major instrument in this market is reflected in hav-

ing 11 of 12 self-price effects significant. Four self-feature effects, six
self-display effects, three self-coupon effects, and seven brand-specific

intercepts were significant.
Residual analysis seems to be a practical means for identifying cross

effects. The criterion identified 29 cross-price effects, of which 22 were

statistically significant in the final model. There were 12 cross-feature
effects, 4 of which were significant in the final model; 18 display effects

were identified and half of these were significant in the final model. Of the
20 cross-coupon effects identified in the residuals from the differential-

effects model, 10 were significant in the final model.
Reading through a regression output like this is a tedious but useful

step in developing an initial understanding of market and competitive
structure. But two more elements are needed before responsible brand

planning can take place. First, parameters have to be converted to elas-
ticities before an overall picture of the structure can be achieved (see
Chapter 6). And second, a category-volume model must be calibrated

before a market simulator can be developed. This is the topic of the next
section.

5.12.2 The Category-Volume Model

A category-volume model of the style in equation (5.33) is reported in
Table 5.14.44 The private-label brands were aggregated into a single

43This was in part dictated by the criterion for a minimum of 53 observations before
a significant residual correlation could qualify as a cross effect. This excluded all
but the AOPL brand. In the category-volume model presented later in this chapter
and in the brand planning exercise in Chapter 7 all the private label brands are
aggregated together. If this had been done in the market-share model, more cross
effects involving these brands might have been identified. If market-share analysis
is done as an iterative process (as was discussed early in this book), this refinement
could be undertaken.

44Only data from grocery chains 1 – 3 are used in this model so that the results
would correspond to the competitive maps developed in Chapter 6 and the market
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simulator developed in Chapter 7.
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Table 5.14: Regression Results for Category-Volume Model

Dep Variable: LTWVOL
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 31 42.88 1.38 38.29 0.01
Error 124 4.48 0.04
C Total 155 47.36

Root MSE 0.19 R-Square 0.91
Dep Mean 7.55 Adj R-Sq 0.88

C.V. 2.52

Parameter Estimates

Parm Std T for H0

Variable DF Est Err Parm=0 Prob> |T |

INTERCEP 1 6.73 0.84 7.98 0.01
BA4-HLBR 1 –0.13 0.35 –0.36 0.72
LPR1-Folg 1 –0.74 0.38 –1.96 0.05
LPR2-RMH 1 –0.73 0.40 –1.83 0.07
LPR3-MHMB 1 0.56 0.51 1.09 0.28
LPR4-HLBR 1 –0.13 0.40 –0.33 0.74
LPR5-CFON 1 –2.09 0.42 –4.97 0.01
LPR6-Yub 1 –0.32 0.73 –0.43 0.67
LPR7-CAS 1 0.77 1.02 0.75 0.45
LPR8-AOB 1 3.25 0.25 13.08 0.01
LPRPL-APL 1 –0.67 0.45 –1.50 0.14
D1-Folg 1 0.62 0.14 4.47 0.01
D2-RMH 1 0.50 0.10 4.79 0.01
D3-MHMB 1 0.29 0.12 2.53 0.01
D4-HLBR 1 0.13 0.06 1.98 0.05
D5-CFON 1 –0.05 0.09 –0.50 0.62
D8-AOB 1 0.38 0.12 3.13 0.01
DPL-APL 1 0.05 0.10 0.48 0.63
C1-Folg 1 –0.13 0.18 –0.70 0.49
C2-RMH 1 0.08 0.10 0.81 0.42
C3-MHMB 1 0.04 0.40 0.10 0.92
C4-HLBR 1 –2.06 0.95 –2.16 0.03
C5-CFON 1 0.30 0.23 1.28 0.20
C8-AOB 1 –0.68 0.59 –1.14 0.26
CPL-APL 1 0.17 0.12 1.44 0.15
F1-Folg 1 –0.08 0.12 –0.67 0.50
F2-RMH 1 0.01 0.09 0.07 0.95
F3-MHMB 1 0.03 0.08 0.39 0.70
F4-HLBR 1 –0.01 0.10 –0.14 0.89
F5-CFON 1 0.06 0.09 0.63 0.53
F8-AOB 1 0.56 0.12 4.68 0.01
FPL-APL 1 0.01 0.10 0.06 0.95
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PL brand. A preliminary model showed that lagged volume had no
significant effect (t = –.96), that there were no features, displays, or

coupons in Chains 1 – 3 for either Yuban or Chase & Sanborne (so that
these effects were deleted). Only Hills Bros. had a distribution pattern

that required a brand-absence coefficient (BA4).

The overall fit of the model is quite good (R2 = .91).45 The strongest
price influences on total volume come from discounts for Folgers, Maxwell

House, and Chock Full O’Nuts. Discounts for these brands clearly ex-
pand the weekly volume. As prices for the aggregate AOB category
increase, total volume increases — perhaps reflecting supply conditions

or prestige effects for these premium brands. Displays for Folgers, both
Maxwell House brands, Hills Bros., and AOB drive up category volume.

Hills Bros. store coupons seem to contract total volume, reflecting the
infrequent (and apparently counter-cyclical) store-couponing policy for

this brand. The only significant feature effect is associated with the AOB
category.

5.12.3 Combining Share and Category Volume

The choice of measures incorporated into both the market-share and
category-volume models was dictated in large part by the need for a di-

agnostically useful market simulator. To the extent that the variables
inside these markets can explain market behavior, we obtain a way of

translating market history into elasticities. Chapter 6 develops methods
for mapping the market and competitive structure implied by the elas-

ticities — as well as methods for visualizing the sources driving changes
in competitive structure. In Chapter 7 the market-share and category

volume models are combined into a market simulator for evaluating the
consequences of marketing actions for all brands.

5.13 Large-Scale Competitive Analysis

This section addresses two questions. The first concerns whether or
not market-share analysis can be done on a large enough scale to be

practical. Simply stated, the issue is how large is too large? The second
issue centers on the fixation managers seem to have concerning the signs

45This would be boosted to .99 by the inclusion of chain-specific intercepts. But
this category-volume model is destined for use in the market simulator to be used in
Chapter 7. We feel that the generality of the planning frame used in that chapter is
enhanced by predicting volume for a generic chain rather than chain by chain.
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of parameters developed using best linear-unbiased estimation. Simply
stated, the issue is is BLUE always best? Both of these topics will be

discussed using experience arising from the implementation of market-
share models on optical-scanner (POS) records of weekly store sales from

Nielsen Micro-Scantrack databases and IRI store-level databases.
There are 15 steps which have been integrated into a SAS(R) macro

program to perform the analytical tasks in estimating asymmetric market-
share models.

1. Form the flat file containing variables [Sales plus Marketing Instru-

ments] and observations [Brands × Stores × Weeks].

2. Choose the model form (MCI or MNL) and the transformations of

variables (zeta-scores, exp(z-scores), or raw scores).

3. Form the differential-effects file containing the expanded set of vari-

ables [Sales + (Instruments + 1) × Brands] for the same observa-
tions.

4. Form the differential-effects covariance matrix and store.

5. Estimate the differential-effects model.

6. Find the brand intercept nearest zero and delete.

7. Re-estimate the differential-effects model.

8. Compute the residuals and sort by brand.

9. Cross correlate each brand’s residuals with the marketing instru-

ments of every competitor.

10. Tally the significant cross correlations.

11. Form the differential cross-effect variables.

12. Compute and store complete covariances (differential effects and
cross-competitive effects).

13. Simultaneously re-estimate the parameters for all the effects in the
calibration data.

14. Estimate or GLS weights and re-estimate parameters.

15. Cross validate on fresh data.
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5.13.1 How Large Is Too Large?

The size implications of two applications are summarized in Table 5.15.

The two applications reported there involve data from IRI and A.C.
Nielsen. The IRI data are those just summarized for the ground, caf-

feinated coffee market. The Micro-Scantrack data involve a mature cat-
egory of a frequently purchased, branded good. There were around 30

brands which were represented at the brand-size level — leading to 66
competitors in the model. The IRI data tracked four marketing instru-

ments: prices, newspaper features, store coupons, and in-store displays.
These data predate the size grading of newspaper features now standard

with IRI data. The Nielsen data tracked five marketing instruments:
prices, major ads, line ads, coupon ads, and in-store displays. Includ-
ing the brand-specific intercepts, the Step 3 differential-effects file for

the IRI example has 60 variables, while the Nielsen application contains
396 differential-effect variables. With seven grocery chains reporting 52

weeks of sales, the IRI example has about 2200 observations in the cal-
ibration data set. The Nielsen example has up to 155 stores reporting

each week, which translates to about 113,000 observations in 26 weeks.

Step 10 involves a user-controlled, statistical criterion for which resid-

ual correlations are translated into cross-competitive effects. In the IRI
application any correlation with more than 52 observations and a sig-

nificance level more extreme than .05 was selected. This produced 81
cross effects involving all marketing instruments and leading to a Step
12 covariance matrix around 140 × 140. Using the same criterion on the

Nielsen example led to the identification of around 4,000 potential cross-
competitive effects. This would require the computation of a 4,400 ×

4,400 covariance matrix, which is too large to compute in SAS(R) on an
IBM 3083. Making the required number of observations much larger and

the required significance level wildly extreme still lead to around 700 po-
tential cross-competitive effects. Finally only the 200 statistically most

extreme, cross-competitive effects were selected. These most-extreme
effects all involved prices.

The comparison of timing results are somewhat exaggerated by the
differences in the mainframes involved. The IBM 3090 model 200 on
which the smaller example was run is a enormously capable computer.

While neither the vector or parallel capabilities of this machine were
really involved in this illustration, the size of the problem did not tax

the resources of the 3090. All 15 steps in the analysis took around
32 CPU seconds. The IBM 3083 used in the large application is an
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Table 5.15: Computer Resources for Two Applications

IRI Nielsen

Chain-Level Data Micro Scantrack Data

12 Brands 66 Brand-Sizes
4 Instruments 5 Instruments

Price Price
Features Major Ads

Line Ads
Store Coupons Coupon Ads

Displays Displays

60 Differential Effects 396 Differential Effects
7 Chains/Week Up to 155 Stores/Week

52 Weeks ∼ 2200 Obs. 26 Weeks ∼ 113000 Obs.

Cross Effects

Obs > 50 p < .05 Obs > 50 p < .05
79 Cross Effects ∼ 4000 Cross Effects

Pick 200 Most Extreme

Timing

On IBM 3090 On IBM 3083

∼ 32 CPU Seconds ∼ 120 CPU Minutes

Steps 1 – 15 Steps 1 – 10
∼ 120 CPU Minutes

Steps 11 – 12
∼ 10 CPU Minutes

Step 13

extended architecture (XA) machine, but the time and space required
still reflected a substantial strain on the machine resources. The first

ten steps required two hours of CPU time, most of which was spent
forming the large (∼ 400×400) covariance matrix. Forming the extended

covariance matrix, including 200 cross effects, required another two hours
of CPU time. Once the covariance matrix was stored, however, trying

out different specifications in search of a final model only took about 10
CPU minutes per run. The estimation step was not run on the large

example.

The huge number of initial cross effects in the 66-competitor exam-
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ple makes it clear that we can get too large unless careful judgment
is exercised. The size of the analysis is quite sensitive to the number of

competitors for which a full differential-effects specification is attempted.
This application would have been more manageable if the 30 brands were

considered the basis of the differential-effects specification, and size had
been treated as a simple variable in most cases.

The 66-competitor illustration is near the limit of practicality using

the system of models employed here. For comparison, however, it is use-
ful to assess the resources needed to estimate this size illustration using
the analytical methods developed by Shugan46 for data such as these.

Shugan’s method requires the computation of many simple regressions.
If a very fast machine required only 40 nanoseconds to compute a regres-

sion, it would take 2× 1083 CPU seconds to complete the 66-competitor
illustration. This means that if a super computer had begun at the

moment of the creation of the universe, it would still not be done. In
fact, the age of the universe could be taken to the seventh power and

computation would still be incomplete.

5.13.2 Is BLUE Always Best?

Best linear-unbiased estimation provides the robust foundation on which

the competitive-analysis system relies for its parameter estimates. But,
as every analyst knows, some parameters can turn up with the “wrong

signs.” Price parameters which are positive are difficult to explain except
perhaps in prestige product classes. Negative parameters for promotions
or advertising are difficult to explain — particularly to the managers

running the promotions.

It seems to be left to the analyst to explain such events, as managers
seem to presume that they are the consequences or quirks of the models.

Analysts assume that the explanation is in the data, and the managers
typically know the market conditions reflected in the data far better than

the analysts.
There are several basic problems with this scenario. First is a problem

of salience — are wrong-signed parameters more salient than they should
be? The second problem concerns orientation. In simple constant-

elasticity models the parameters are the elasticities. But complex market-
response models recognize that elasticities vary as market conditions

change. Management needs to know how markets respond to a firm’s

46Shugan, Steven M. [1987], “Estimating Brand Positioning Maps from Supermarket
Scanning Data,” Journal of Marketing Research , XXIV (February), 1-18.
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marketing efforts, but that knowledge is reflected far better in elastic-
ities than in parameters. Third, there is an organizational problem.

In the tension between management science and management, analysts
should be more responsible for the models and managers more respon-

sible for the data and how results are interpreted. But what one side
does not understand should be the responsibility of both sides to figure

out. Management scientists must develop and apply techniques across a
number of managerial domains. They should not be expected to know

the data of a domain with the kind of intimacy needed to manage. The
second and third problems are addressed in more depth in Chapter 7, so

that only the first is considered further here.

The problem of salience asks if wrong-signed parameter estimates get

more attention than their frequency should command. Tables 5.16 and
5.17 summarize the parameter estimates for the two illustrations.

Table 5.16: Summary of BLUE Parameters — IRI Data
Differential-Effects Model Cross-Effects Model

R2 = .83 F 59
2184 = 180 R2 = .93 F 140

2051 = 181

Marketing Right No. Wrong Sign Right No. Wrong Sign
Instruments Sign Signif. p < .05 Sign Signif. p < .05

Prices 11/12 9/12 0/12 11/12 11/12 0/12
Features 7/12 3/12 1/12 9/12 4/12 1∗/12
Displays 9/12 8/12 0/12 9/12 6/12 0/12
Coupons 8/12 1/12 1/12 9/12 3/12 2/12
Totals 35/48 21/48 2/48 38/48 24/48 3∗/48

* One aggregate brand.

In Table 5.16 we see that in the differential-effects model 21 of 48
parameters are statistically significant in the expected direction, while

only 2 of 48 parameters are statistically extreme with the wrong sign.
Moving to the cross-effects model, 24 of 48 differential effects are statis-

tically significant in the expected direction, in spite of the inclusion of 81
cross effects. In the cross-effects model there are 3 of 48 differential-effect

parameters which are statistically extreme in the unexpected direction,
and one of these relates to a brand aggregate. Since brand aggregates are
not expected to behave as regularly as brands, these parameters prob-

ably present no problems for the management scientist or the manager.
This is certainly not different than one might expect by random chance.

Yet it is very likely that these parameters will be the ones questioned
by managers. The analyst is forced to track the stability of the pattern
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Table 5.17: Summary of BLUE Parameters — Nielsen Data

Cross-Effects Model

R2 = .67 F 446
113000 = 503

Marketing Wrong Sign
Instruments Right Sign Significant p < .05

Prices 62/66 55/66 4/66

Major Ads 50/66 35/66 1/66
Line Ads 57/66 29/66 1/66

Coupon Ads 43/66 21/66 7/66
Displays 55/66 47/66 2/66

Totals 267/330 187/330 15/330

of coefficients between the differential-effects model and the cross-effects
model, as well as check the possible sources of collinearity of the variables
or lack of variability in the instruments in question. But because of the

strong prior hypotheses of managers about the directions of marketing
effects, the focus is often on the two unusual parameters, rather than the

24 significant differential effects or the 45 significant cross effects which
seem to be driving the market. The burden of explanation is on the

analysts who may know little about the market data from which these
parameters arise.

The problem is tractable perhaps, when only a few parameters require
special explanation. But with large-scale applications the number of
parameters to follow can reasonably grow large. Table 5.17 summarizes

the cross-effects model for the 66-competitor example. While 187 of 330
differential effects are significant in the expected direction, 15 of 330 have

the wrong sign and p < .05. 15 of 330 beyond the .05 level is well within
expectation, but explaining the source of these potentially anomalous

effects is at least time consuming and diverting from the main task of
understanding market response.

Given the strong prior hypotheses of managers, there is another ap-
proach to parameter estimation which merits study. Quadratic program-
ming would allow us to specify a set of inequality constraints on the pa-

rameters which would correspond to the prior hypotheses of managers.
Consider an estimation scheme in which the differential-effect parameters

estimated in Steps 5 and 7 would be bounded by a quadratic program to
conform to the prior hypotheses. The residual analysis in Steps 8 – 11
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would proceed as before. But at Step 13 the cross-competitive effect pa-
rameters would be estimated against the full set of residuals, rather than

recombined with the differential effects in a BLUE scheme for overall re-
calibration against market shares. This approach gives primacy to the

explanatory power of the differential effects. Whatever they can explain
which is consistent with prior hypotheses is given to them. The cross-

competitive effects are used to explain the systematic part of whatever
is left over.

Whenever one considers moving away from BLUE schemes, caution
and study are advised. But given the strong priors regarding the effects

of marketing instruments, this avenue of research should be pursued.

5.14 Appendix for Chapter 5

5.14.1 Generalized Least Squares Estimation

Nakanishi and Cooper [1974] showed that the total covariance matrix

of errors Σε is approximately the sum of the variance-covariance matrix
among sampling errors, Σε2 , and the variance-covariance matrix among

specification errors, Σε1 . For the simplified estimation procedures the
estimate of Σε2t

comes from

Σ̂ε2t
=

1

nt
(Π̂−1

t − J) (5.34)

where nt is the number of individuals (purchases) in time period t, Π̂−1
t

is an (mt × mt) diagonal matrix with entries equal to the inverse of the
market shares estimated by the OLS procedure for the mt brands in this

period, and J is a conformal matrix of ones.

The variance-covariance matrix of specification errors, Σε1, is as-

sumed to be constant in each time period and is estimated by σ̂2
ε1I where

σ̂2
ε1 =

Q −
∑T

t=1 trΣ̂ε2t
+ tr[(

∑T
t=1 Z

′

tZt)
−1(
∑T

t=1 Z
′

tΣ̂ε2t
Zt)]∑T

t=1 mt − gK − T
(5.35)

where Q is the sum of squares of the OLS errors, and Zt is an (mt ×

[K + T ]) matrix containing the logs of the K explanatory variables with
the T time-period dummy variables concatenated to it. This formula for

σ̂2
ε1 is considerably simpler than the one in Nakanishi and Cooper [1974,

p. 308)] and also corrects a typographical error in that equation.
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The total variance-covariance matrix Σ̂ε is a block-diagonal matrix
in which each block is the sum of Σ̂ε2t

+ Σ̂ε1 .

æ



Chapter 6

Competitive Maps

We are concerned in this chapter with the conversion of analytical re-
sults into decision-related factors. Any such discussion must center on

the use of elasticities. A marketing plan should contain an instrument-
by-instrument account of the actions to be taken — what prices to charge

and what discounts to offer, what print ads to commission, how much to
allocate to radio and television, what coupons to offer as a manufacturer

and what coupons to cosponsor with retailers. To make these decisions
on a sensible basis one needs to estimate the expected market response

to changes in each of these elements of the marketing mix. Elasticities
provide that instrument-by-instrument account of expected market re-
sponse. The marketing literature provides many examples. Research

on optimal advertising expenditures1 provides many insightful special
cases of the general, elasticity-based rule that you allocate resources to

advertising in proportion to the marginal effectiveness of advertising in
generating contributions to profits. Similarly, the literature on optimal

price,2 and general issues of optimal marketing mix and marketing effec-

1Dorfman, Robert A. & Peter D. Steiner [1954], “Optimal Advertising and Optimal
Quality,” American Economic Review, 44 (December), 826-36. Clarke, Darral G.
[1973], “Sales-Advertising Cross-Elasticities and Advertising Competition,” Journal

of Marketing Research, 10 (August), 250-61. Bultez, Alain V. & Philippe A. Naert
[1979], “Does Lag Structure Really Matter in Optimal Advertising Expenditures?”
Management Science, 25, 5 (May), 454-65. Magat, Wesley A., John M. McCann
& Richard C. Morey [1986], “When Does Lag Structure Really Matter in Optimal
Advertising Expenditures?” Management Science, 32, 2 (February), 182-93.

2Bass, Frank M. & Alain V. Bultez [1982], “A Note On Optimal Strategic Pric-
ing of Technological Innovations,” Marketing Science, 1, 4 (Fall), 371-78. Kalish,
Shlomo [1983], “Monopolistic Pricing With Dynamic Demand and Production Cost,”
Marketing Science, 2, 2 (Spring), 135-59. Rao, Ram C. & Frank M. Bass [1985], “Com-

177
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tiveness3 use elasticities in describing optimal decisions.

The problem is that much of this literature deals with an elasticity
as if it were a fixed quantity or at best a random variable whose ex-

pected value completely summarizes it. Even if some of these studies
oversimplify the case for expository purposes, managers seem most of-
ten interested in the single number that represent their brand’s price

elasticity or advertising elasticity.

Studies of the relation between price and product life cycle4 deal
with expected changes in elasticities as a function of the developmen-

tal stage of a product. Such efforts are steps in the right direction, for
they recognize that elasticities are not fixed and invariant. This is a
view we support. First, we have seen in Figures 2.1 and 3.3 four func-

tional forms describing the changes in elasticities with changing market
conditions. Second, we believe that managers should be interested in

the whole changing pattern of elasticities and cross elasticities in a mar-
ket. So instead of a single estimate of own-price elasticity, we advocate

dealing with a matrix of price elasticities in each time and place.
In this chapter we present ways to visualize and understand the com-

plex pattern of elasticities. A special case of multimode factor analysis
portrays the systematic structure driving changes in these asymmetric

cross elasticities. Continuing the coffee-market example introduced in
the last chapter, we will see that the analysis of the variation in elastic-

ities over retail outlets and weeks reveals competitive patterns showing
that this market shifts during sales for the major brands. Analysis of

the brand domain results in a map with each brand appearing twice.
One set of brand positions portrays how brands exert influence over the
competition. The other set of points portrays how brands are influenced

by others. The interset distances (angles) provide direct measures of

petition, Strategy, and Price Dynamics: A Theoretical and Empirical Investigation,”
Journal of Marketing Research, XXII (August), 283-96.

3Lambin, Jean-Jacques, Philippe A. Naert, & Alain V. Bultez [1975], “Optimal
Market Behavior in Oligopoly,” European Economic Review, 6, 105-28. Karnani,
Aneel [1983], “Minimum Market Share,” Marketing Science, 2, 1 (Winter), 75-93.
Morey, Richard C. & John M. McCann [1983], “Estimating the Confidence Interval
for the Optimal Marketing Mix: An Application to Lead Generation,” Marketing

Science, 2, 2 (Spring), 193-202.
4Parsons, Leonard J. [1975], “The Product Life Cycle and Time-Varying Adver-

tising Elasticities,” Journal of Marketing Research, XVI (November), 439-52. Simon,
Hermann [1979], “Dynamics of Price Elasticities and Brand Life Cycles: An Empir-
ical Study,” Journal of Marketing Research, XVI (November), 439-452. Shoemaker,
Robert W. [1986], “Comments on Dynamics of Price Elasticities and Brand Life Cy-

cles: An Empirical Study,” Journal of Marketing Research, XXIII (February), 78-82.
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competitive pressures.

Our approach is founded on an understanding of how elasticities re-

flect the competitive structure in a market. Elasticities serve as measures
of competition — indicators of market structure. We combine the visual

emphasis coming out of psychometrics with the mathematical emphasis
of economics.

The traditional psychometric approach to market-structure analysis
has developed mainly without reference to or use of elasticities. This
approach uses multidimensional scaling (MDS) to map perceived simi-

larities or preferences among the brands, or to model consumer choice as
some function of how far each brand is from the most preferred position

in a brand map.5 People are asked one of the most neutral questions in
all of social science (e.g., “How similar are the brands in each pair?”), and

MDS provides from the answers powerful visual methods for portraying
the dimensions underlying consumer perceptions. In new-product re-

search, MDS provides a basis for understanding how consumers might
react to new offerings. But, for the management of mature brands, par-

ticularly frequently purchased branded goods (FPBGs), this approach’s
power of discovery contributes to an important representational problem.
Depending on the context, substitutable and complementary products

could both appear close together in the perceptual space. For exam-
ple, hot dogs and Coke (complements) could be near each other in one

perceptual space, while Coke and Pepsi (substitutes) could be close to-
gether in another perceptual space.6 Since substitutes are competitors

and complements are not, we would want these very different products
to take very distinct positions in any visual representation. While care-

ful consideration of market boundaries is helpful, the ambiguity between
the treatment of substitutes versus complements can diminish the utility

of traditional MDS for brand management.

Approaches to market structure using panel data may be able to
overcome this ambiguity. The record of interpurchase intervals available

in panel data can reveal information about substitutes versus comple-
ments. In the extreme case, co-purchase of two brands on a single buy-

5For a summary of this research see Cooper, Lee G. [1983], “A Review of Multi-
dimensional Scaling in Marketing Research,” Applied Psychological Measurement, 7
(Fall), 427-50.

6Factor analysis of consumer rating scales has less difficulty here than does MDS,
since the attributes of substitutes should be much more highly correlated than the
attributes of complements — leading to similar locations for substitutes, but quite
dissimilar positions for complements.
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ing occasion indicates complementarity, while switching between brands
with equal interpurchase times indicates substitutability.7 Fraser and

Bradford8 used this kind of information in a panel-based index of re-
vealed substitutability which they decomposed using principal compo-

nents. But their method is more of a market partitioning than a com-
petitive mapping. There is also a whole stream of research based on

panel or discrete-choice data beginning with Lehmann’s9 use of brand-
switching data as similarity measures in MDS. The Hendry Model,10

the wandering vector model,11, Genfold212, Moore & Winer‘s13 use of
panel data in Levine’s14 pick-any analysis, and the powerful maximum-

likelihood procedures in Elrod’s Choice Map15 can be thought of as part
of the general effort to develop market-structure maps from disaggregate
choice data. Moore & Winer [1987] distinguish their effort by using a

multiple-equation system to integrate panel data with market-level data,
but only Fraser & Bradford [1983] specifically address the potential of

panel data to resolve the representational ambiguity involving substitutes
and complements.

7This can be muddled, however, since panel records are mostly of household pur-
chases. Co-purchase may simply indicate that different members of the household
like different brands. So-called super-position processes are discussed by Kahn, Bar-
bara E., Donald G. Morrison & Gordon P. Wright [1986], “Aggregating Individual
Purchases to the Household Level,” Marketing Science, 5, 3 (Summer), 260-68.

8Fraser, Cynthia & John W. Bradford [1983], “Competitive Market Structure Anal-
ysis: Principal Partitioning of Revealed Substitutabilities,” Journal of Consumer Re-

search , 10 (June), 15-30.
9Lehmann, Don R. [1972], “Judged Similarity and Brand-Switching Data as Simi-

larity Measures,”Journal of Marketing Research , 9, 331-4.
10Kalwani, Manohar U., & Donald G. Morrison [1977], “Parsimonious Description

of the Hendry System,” Management Science , 23 (January), 467-77.
11Carroll, J. Douglas [1980], “Models and Methods for Multidimensional Analysis of

Preferential Choice (or Other Dominance) Data,” in Ernst D. Lantermann & Hubert
Feger (editors), Similarity and Choice , Bern: Hans Huber Publishers, 234-89. DeS-
oete, Geert & J. Douglas Carroll [1983], “A Maximum Likelihood Method of Fitting
the Wandering Vector Model,” Psychometrika, 48, 4 (December), 553-66.

12DeSarbo, Wayne S. & Vitalla R. Rao [1984], “GENFOLD2: A Set of Models
and Algorithms for GENeral UnFOLDing Analysis of Preference/Dominance Data,”
Journal of Classification, 1, 2, 147-86.

13Moore, William L.& Russell S. Winer [1987], “A Panel-Data Based Method for
Merging Joint Space and Market Response Function Estimation,” Marketing Science,
6, 1 (Winter), 25-42.

14Levine, Joel H. [1979], “Joint-Space Analysis of ‘Pick-Any’ Data: Analysis of
Choices from an Unconstrained Set of Alternatives,” Psychometrika , 44, 85-92.

15Elrod, Terry [1987], “Choice Map: Inferring Brand Attributes and Heterogeneous
Consumer Preferences From Panel Data,” Marketing Science, forthcoming.
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The modeling efforts using aggregate (store-level) data have had dif-
ficulty dealing with both complements and substitutes. Shugan16 has

developed methods to represent the market structure specifically implied
by the demand function in the Defender model.17 This market-structure

map contains price-scaled dimensions. The elasticities implied by the
Defender model can be computed as simple relations among the angles

brands make with these per-dollar dimensions. While brand positions
have the advantage of relating directly to the rich strategic implications

of the Defender model, choice sets have to be very carefully defined to
screen out complements. Otherwise brands may be forced to have neg-

ative coordinates on some dimension. There is still uncertainty about
the meaning of a negative coordinate on a per-dollar dimension. Van-
honacker18 is one of the few to use elasticities to map market structure.

He has worked on methods which result in two separate structural maps
— one for negative cross elasticities and one for positive cross elastici-

ties. But how we integrate information across these two maps is, as yet,
unresolved.

Yet the full set of elasticities provides a very natural and conceptually
appealing basis for portraying market and competitive structure. The

brands could be represented as vectors from the origin. The stronger
the cross elasticity between two brands, the more correlated those brand

vectors should be. The more complementary two brands are in the mar-
ket, the more opposite they should be in the map. If two brands do
not compete at all (zero cross elasticity), their vectors should be at right

angles (orthogonal). Thus the patterns of substitutability, complemen-
tarity, and independence could be represented in a single map. These

are the properties of a map we would get by viewing cross elasticities as
cosines (or scalar products) between brand positions in a multidimen-

sional space. What we gain is a way of visualizing a whole matrix of
elasticities — a competitive map.

16Shugan, Steven M. [1986], “Brand Positioning Maps From Price/Share Data,”
University of Chicago, Graduate School of Business, Revised, July. Shugan, Steven
M. [1987], “Estimating Brand Positioning Maps From Supermarket Scanning Data,”
Journal of Marketing Research, XXIV (February), 1-18.

17Hauser, John R. & Steven M. Shugan [1983], “Defensive Marketing Strategies,”
Marketing Science, 2, 4 (Fall), 319-360.

18Vanhonacker, Wilfried [1984], “Structuring and Analyzing Brand Competition
Using Scanner Data,” Columbia University, Graduate School of Business, April.
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6.1 *Asymmetric Three-Mode Factor Analysis

Consider a three-way array of the cross-elasticities as depicted in Fig-

ure 6.1. If we think of it as a loaf of sandwich bread, each slice sum-
marizes the elasticities in a time period. The entries in each row of

a slice of this loaf summarize how all the brands’ prices (promotions)
affect that row brand’s sales. The entries in a column from any slice

summarize how one brand’s prices (promotions) affect all brands’ sales.
Then the elements in an elasticities matrix are represented by the inner

(scalar) product of (1) a row from a matrix R reflecting how receptive
or vulnerable each brand is to being influenced by some small number

of underlying market-place forces, and (2) the elements in a row from a
matrix C reflecting how much clout each brand has in the market. We
can think of a series of basic factors that reflect the clout or power of

brands in a market. How influential each basic source of power is in the
overall clout of a particular brand would be reflected in the scores of

that brand in the C matrix. Similarly, we can think of a series of basic
factors that reflect vulnerability in a market. How influential each basic

source of vulnerability is in the overall vulnerability of a particular brand
would be reflected in the scores of that brand in the R matrix. A cross

elasticity is the inner (scalar) product of the clout of one brand times
the receptivity/vulnerability of the other brand.

After developing this representation for a single time period, it is
generalized by assuming that the competitive patterns underlying time
periods are related by simple nonsingular transformations (i.e., that the

dimensions of a common space can be differentially reweighted and dif-
ferentially correlated to approximate the pattern of influences in any

single time period). Establishing a common origin and units of measure
for the R and C matrices allow plotting in a joint space.

Equation (6.1) represents the cross elasticities E in a particular time
period t as the scalar product of a row space R (reflecting scores for

brands on receptivity/vulnerability factors) for time period t and a col-
umn space C (reflecting scores for brands on clout factors) for time period

t plus a matrix ∆ of discrepancies (lack of fit).

iE
(t)
j = iR

(t)
q C

(t)
j + i∆

(t)
j (6.1)

Similar entries in the row space for t indicate similarities between
brands in the way they are influenced by competitive pressures — recep-

tivity or vulnerability. Similar entries in the column space for t indicate
similarities between brands in how they exert influence on others —
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Figure 6.1: Three-Mode Array of Elasticities

clout. So while the inner (scalar) product across R and C reflects cross

elasticities, the inner product within R reflects similarity in the pattern
of how brands are influenced (i.e., receptivity or vulnerability), and the

inner product within C indicates similarity in the pattern of how brands
exert influence on other brands (i.e., clout).

We can think of the row space for a particular period t as being
related to a common row space R. The dimensions of the space for a
particular period could be a simple reweighting (shrinking or stretch-

ing) of the dimensions of the common space and/or the dimensions of
the common space might have to be differentially correlated to reflect

what is going on in a particular period. The combinations of shrink-
ing or stretching of each dimension and differential correlation between

the dimensions of the common space to reflect a particular period can be
summarized in a nonsingular transformation Q for relating the particular

period t to the common row space R.

iR
(t)
q = iRqQ

(t)
q (6.2)

Similarly, we can think of the column space for t as a nonsingular trans-

formation U of common column space C:

qC
(t)
j = qU

(t)
q Cj . (6.3)

Tucker19 developed this basic formulation as an extension of his pio-

19Tucker, Ledyard R [1969], “Some Relations Between Multi-Mode Factor Analysis
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neering work on three-mode factor analysis.20 Elasticities in each period
are represented, in terms of the common row and column spaces, as the

sum (over time-factors l = 1, . . . , L) of the triple matrix-product — the
row space times the appropriate layer of the core matrix G(l) times the

common column space. Each term in the triple product is weighted by
a coefficient wtl showing the association of each time period with each

time-factor (like factor scores for time periods).

iE
(t)
j =

L∑

l=1

iRqG
(l)
q Cjwtl + i∆

(t)
j (6.4)

A joint space represents brand competition on each time-factor.21

Each layer of the core matrix is diagonalized using singular-value de-

composition:

qG
(l)
q = qV

(l)
q Γ(l)2

q Y (l)
q (6.5)

where V (l) contains the left principal vectors of a particular layer of
the core matrix, Y (l) contains the right principal vectors, and Γ(l)2 is a
diagonal matrix of singular values.

iR
(l)
q = iRq(V

(l)
q Γ(l)

q ) (6.6)

qC
(l)
j = (qΓ

(l)
q Y (l)

q )Cj (6.7)

In this joint space, R(l) reflects the similarities in how brands are
influenced, C(l) reflects the similarities in how brands exert influence,

and Linear Models for Individual Differences in Choice, Judgmental and Performance
Data,” Paper presented to the Psychometric Society Symposium: Multi-Mode Factor
Analysis and Models for Individual Differences in Psychological Phenomena, April 18.

20Tucker, Ledyard R [1963], “Implications of Factor Analysis of Three-Way Matrices
for Measurement of Change,” in Chester W. Harris (editor), Problems in Measuring

Change, Madison: University of Wisconsin Press, 122-37. Tucker, Ledyard R [1966],
“Some Mathematical Notes On Three-Mode Factor Analysis,” Psychometrika, 31, 4
(December), 279-311. Closely related developments are reported in Tucker, Ledyard
R [1972], “Relations Between Multidimensional Scaling and Three-Mode Factor Anal-
ysis,” Psychometrika, 37, 1 (March), 3-27, and illustrated in Cooper, Lee G. [1973],
“A Multivariate Investigation of Preferences,” Multivariate Behavioral Research, 8
(April), 253-72. In these latter two articles symmetric, brand-by-brand arrays make
up each layer of the three-mode matrix, making the analysis a very general model for
individual differences in multidimensional scaling. In the current context, individual
differences are replaced by differences in the competitive mix from one time to an-
other, and the symmetric measures of brand similarity are replaced by asymmetric
measures of brand competition.

21See Kroonenberg, Pieter M. [1983], Three-Mode Principal Components Analysis:

Theory and Applications, Leiden, The Netherlands: DSWO Press, 164-67.
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and the proximity (cosine between the vectors) of row and column points
reflects how much the brands compete. From the joint-space coordinates,

we approximate the elasticities corresponding to any particular week or
any simulated pattern of marketing activity, using:

iẼ
(t)
j =

L∑

l=1

iR
(l)
q C

(l)
j wtl . (6.8)

Thus if the analysis of differences in competitive contexts reveals

particularly interesting patterns, we could approximate the elasticities
which reflect those competitive conditions. Repeating the analysis on

just the approximated elasticities for some special condition, we create
a competitive map specific to this context. With only one layer this

is a two-mode analysis which amounts to a singular-value decomposi-
tion of the E matrix, in which the variance is split between the left
principal vectors and the right principal vectors. The result is the asym-

metric three-mode equivalent of idealized-individual analysis developed
by Tucker and Messick22 for the individual-differences model for multi-

dimensional scaling. For any idealized competitive pattern t∗ in which
the elasticities have been approximated by equation (6.8), we get the

simplest representation:

iẼ
(t∗)
j = iR

(t∗)
q C

(t∗)
j . (6.9)

This provides a very direct visualization of the idealized elasticities be-

cause the inner product of the coordinates in C(t∗) for brand j and the
coordinates in R(t∗) for brand i will reproduce the (ij) entry in Ẽ(t∗).

These idealized competitive patterns are isolated and interpreted in the
illustration that follows.

6.2 Portraying the Coffee Market

The price parameters from the market-share model for the Coffee-Market
Example were used to generate market-share-price cross elasticities for

each grocery chain in each week. The average elasticities are shown in
Table 6.1. The greatest price elasticity is for Chock Full O’Nuts (−4.71).

The clear policy of this brand is to maintain a high shelf price and gener-
ate sales through frequent promotions. Over 80% of Chock Full O’Nuts

22Tucker, Ledyard R & Samuel Messick [1963], “An Individual Differences Model
for Multidimensional Scaling,” Psychometrika, 28, 4 (December), 333-67.
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sales in these two cities are on price promotions. Chock Full O’Nuts
maintains the third largest market share with this policy. The substan-

tial price elasticities for Folgers, Maxwell House, and All Other Branded
result from a similar policy, but with less frequent and less predictable

price-promotions. Master Blend, Hills Bros., and Yuban have elasticities
more like the private label brands (i.e., PL 1, PL 2, PL 3, and AOPL).

Since the private-label brands have so little to offer other than price, we
might expect them to have greater price elasticities. But with an every-

day-low-price strategy these brands do not generate enough variation in
price to achieve the elasticities of the more frequently promoted brands.

As we see in the subsequent analyses, the average elasticities in Table 6.1
reflect an aggregation of widely differing competitive conditions. There
are shelf-price elasticities which are quite different from the promotion-

price elasticities one obtains during sales for the three major brands in
these markets.

Table 6.1: Average Market-Share Elasticities of Price
Fol- Max Mstr Hills CF Yu-
gers Hse Bln Bros. ON ban

Fol –4.37 0.59 2.53 0.32 1.41 –0.34
RMH 1.95 –3.89 0.56 0.01 0.71 0.19

MB 1.48 –0.05 –0.88 0.02 0.68 0.10
HB –0.53 –0.45 –0.17 –0.54 0.30 0.11

CFN 1.50 1.55 –1.90 –0.32 –4.71 0.35
Yub 0.73 –0.16 –0.25 –0.19 –0.03 0.12
C&S 0.19 0.24 0.09 0.20 0.47 0.05
AOB 1.43 3.47 –0.15 –0.87 –0.28 0.59
PL1 –0.06 0.03 0.02 0.08 0.42 0.00
PL2 0.07 0.08 0.22 0.12 0.42 0.00
PL3 0.16 0.07 –0.14 0.00 0.00 0.05
AO 1.29 0.15 –1.00 0.00 0.00 0.18

AO
C&S AOB PL1 PL2 PL3 PL

Fol –0.44 0.35 –0.06 –0.12 0.06 0.06
RMH 0.26 –0.05 0.15 –0.06 0.10 0.06

MB –0.73 0.48 –0.07 –0.09 –0.11 0.15
HB 0.09 1.23 0.03 –0.08 0.00 0.00

CFN 0.78 1.55 0.86 0.35 0.00 0.00
Yub 0.07 –0.16 0.00 0.00 –0.02 –0.10
C&S –1.47 0.19 0.00 0.04 0.00 0.00
AOB –0.07 –3.46 –0.25 –0.35 –0.47 0.40
PL1 0.00 –0.01 –0.47 0.00 0.00 0.00
PL2 0.06 –0.09 0.00 –0.89 0.00 0.00
PL3 0.00 –0.03 0.00 0.00 –0.14 0.03
AO 0.00 0.04 0.00 0.00 0.03 –0.69
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6.2.1 Signalling Competitive Change

Three-mode factor analysis is a technique for structured exploration. Al-

though elasticities help researchers understand the raw data, the average
elasticities are too aggregate to reflect the diversity of the competitive

environment. The first task of the analysis is to signal when particu-
lar competitive events are part of a systematic pattern. Knowing that

say five particular weeks in particular grocery chains constitute a pat-
tern, we can go back to the original data to seek the meaning of that
pattern in the antecedent conditions (e.g., these are weeks of deep price

cuts for Folgers). This reduces the noise, so that signals are more eas-
ily detected. Next, the three-mode analysis determines the competitive

building blocks for the elasticities. There is a pair of matrices R and
C for each time factor (l = 1, 2, . . . , L) in the matrix W = {wtl}T×L.

Equation (6.8) approximates the elasticities for any particular compet-
itive pattern as a linear combination of the building blocks, where the

entries in a row of W serve as the linear combining weights. While each
pair of matrices R and C can be interpreted, we find it best to form

the linear combinations implied by particularly interesting competitive
patterns and interpret the competitive maps resulting from the approx-
imated elasticities. The building blocks may include more dimensions

than are operative in any particular competitive pattern, and thus may
be more difficult to interpret.

The three-mode factor analysis in this illustration was implemented
using the matrix-algebra routines in SAS(R). The limit of 32,767 elements

in the maximum array size in SAS(R)’s PROC MATRIX meant that
only three of the seven grocery chains reporting each week could be

analyzed.23 This limitation resulted in exclusion of Private Label 3 and
All Other Private Labels from the subsequent analyses, because these
brands were not distributed in Chains 1 – 3.

We choose the number of dimensions to investigate by inspecting a
plot showing how the proportion of variance explained by each factor

trails off as the number of factors increases. Variance is information and
we look for the last relatively large drop in variance — indicating all

subsequent factors have relatively little information. Figure 6.2 shows

23The PROC MATRIX routine is available from the authors. Real applications of
much larger size are currently feasible. First, SAS IML apparently removes the size
restriction. Second, a general three-mode program, developed by Pieter Kroonenberg,
is available for a small fee from the Department of Data Theory, University of Lieden,
P.O. Box 9507, 2300 RA Leiden, The Netherlands.
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this plot for the structure over chains and weeks. The factor structure
over the 52 weeks for the three chains shows that the last large drop

is between factors 4 and 5. Consequently we retain four dimensions,
accounting for almost 93% of the variation over chains and weeks. The

dominant first factor accounts for over 74% of the variance, but we must
look for the last large drop, not the first. The next three factors account

for 9%, 6.5%, and 3% respectively, while none of the remaining factors
accounts for even 1%.24

Figure 6.2: The Number of Factors Over Chains and Weeks

Figures 6.3 and 6.4 plot the weights wtl showing the influence of the

time-factors (l =1 – 4) on the weeks t — with Figure 6.3 depicting the
first two factors over time, and Figure 6.4 portraying factors 3 and 4 over
time. The symbols © (circles) and 3 (diamonds) correspond to grocery

chains 2 and 3, respectively. The 2 (boxes) some of which have letters
inside, represent Chain 1. To help reflect the third dimension

24Choosing factors in this way is of course judgmental, but has a long tradition
in psychometrics. The idea is that there are three classes of factors in any data set
— major-domain factors, minor, but systematic factors and error or random factors.
While statistical criteria attempt to exclude the random factors, psychometricians
traditionally have used factor analysis to isolate only the major domain. While the
minor factors are present and systematic, exploratory factor analysis gives clearest
focus on the major domain. Confirmatory factor analysis and latent-variable causal
modeling, use statistical criteria for choosing the dimensionality, and are consequently
more useful in better developed domains, where the minor-systematic influences are
well known.
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Figure 6.3: Competitive Structure Over Stores — Factors 1 & 2
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Figure 6.4: Competitive Structure Over Stores — Factors 3 & 4
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in these figures the size of the symbol decreases the farther away the
observation is from the “Week” axis. The coefficients for the grocery

chains are indicators of systematic structure of events in these weeks.
Each of these four factors corresponds to a fundamental building block

which collectively can represent any pattern of competition in the data.

The goal is to interpret the patterns of competition. First we note

that it is easy to see that the grocery chains are quite distinct, reflecting
substantial differences in promotion policies among chains. It is easier to
summarize the differences over chains after we understand the pattern

within a chain. Let us look at Chain 1. We are directed in this inquiry
by the fact the original measures are price elasticities. Do the weeks that

stand out correspond to recognizable price events? The weeks marked
by blank boxes (2) indicate Shelf Prices — weeks in which there are

no price promotions in Chain 1. “F,” “M,” and “C” indicate big price
cuts for Folgers, Maxwell House, and Chock Full O’Nuts, respectively.

Note that the weeks in Chain 1 which have high weights on the first
factor reflect shelf-price competition — weeks in which no major brand

is being promoted. These weeks had an average loading of about .11
on Factor 1 and −.08 on Factor 2, but very little weight on Factor 3
(−.02) or Factor 4 (−.04). These linear-combining weights were used

to develop approximate or idealized shelf-price elasticities from the ba-
sic building blocks. These shelf-price elasticities were mapped and are

discussed below.

The weeks with Folgers on sale have somewhat less weight on Factor 1

than the Shelf-Price weeks. Sale weeks for Chock Full O’Nuts have the
weights closest to zero on Factor 2 (see Figure 6.3). Folgers sale weeks

have slightly positive weights on Factor 3, while Chock Full O’Nuts sale
weeks have the greatest negative weight (see Figure 6.4). This pattern
is reversed in Factor 4, with Folgers sale weeks have the most nega-

tive weights and Chock Full O’Nuts sale weeks having strong positive
weights. The positive weights on dimension 3 for Folgers are neutralized

when Folgers and Maxwell House promote simultaneously. These weeks,
marked “FM” in Figure 6.4, look much more like shelf-price weeks, indi-

cating head-to-head promotions partially cancel each other. In general,
Maxwell House sale weeks have less weight on the first factor than the

shelf-price weeks, but are otherwise relatively indistinguishable from the
pattern for shelf-price weeks.

Now that we see that the patterns within a chain differentiate brand

promotions from shelf-price conditions, we can look at the patterns across
chains. The factor structure clearly differentiates Chain 2 as having less
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weight on the first, dominant factor (see Figure 6.3). Since the highest
weights on this first factor reflect shelf-price conditions in Chain 1, we

shouldn’t be surprised to find out that Chain 2, which has the lowest
weight on this factor, has the fewest weeks of shelf-price competition.

Chain 2 tends to run features for majors for up to eight weeks in a row,
and run features for more than one major brand head-to-head — leaving

the fewest weeks without promotions.25 Chain 3 has the highest positive
weights on the third factor (see Figure 6.4). This seems to correspond to

the policy of having very high feature prices for the major brands.26 So it
seems that these differences in promotion policies are summarized in the

relatively distinct locales for each grocery chain in this factor space. We
can further note that within each general chain location, the brand pro-
motions seem to have similar impacts. For instance, in Figures 6.3 and

6.4, the shelf-price weeks have the highest position on Factor 1 relative
to the position of each chain, Folgers or Maxwell House promotions have

the lowest positions on Factor 1 and the highest positions on Factor 3,
while Chock Full O’Nuts promotions have the most positive weights on

Factors 2 and 4 and the most negative weights on Factor 3. Similar to
the interpretation of any factor structure, we must note the events which

stand out and use the associated market conditions and other informa-
tion to guide us in finding meaningful patterns. In this sense any factor

structure is an information space into which the available data are re-
flected in the search for meaning. First we reflected chain number, and
then promotions for different brands, and so on until we understand the

pattern. For all the power of the analysis, it still takes the ability of the
analyst to recognize substantive patterns.

When we isolate a pattern of interest — a particular week or average
of similar weeks, we simply note its coordinates. From these we can use

equation (6.9) to create idealized elasticities corresponding to the com-
petitive pattern. So far we have focused on Chain 1 and noted the pat-

terns associated with shelf-price weeks, Folgers-on-sale weeks, Maxwell
House-on-sale week, and Chock Full O’Nuts-on-sale weeks. Ross27 ad-

vises that idealized individuals be placed very near the positions of real
individuals to minimize the possibility that averaging several locations

25Chain 2 had over 36 deal-weeks for the three largest brands combined, compared
to 19 deal-weeks for Chain 1 and 24 deal-weeks for Chain 3 for these brands.

26Chain 3 tends to feature Folgers or Maxwell House at about $2.32, while the cor-
responding price-on-feature is about $1.91 and $2.10 for Chains 1 and 2, respectively.

27Ross, John [1966], “A Remark on Tucker and Messick’s Points of View Analysis,”
Psychometrika, 31, 1 (March), 27-31.
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could create unreal dimensional structures. Following this advice, the
idealized shelf-price elasticities correspond to the coordinates in the W

matrix for Chain 1 Week 2, the idealized Folgers-on-sale elasticities come
from the coordinates for Chain 1 Week 1, the Maxwell House-on-sale elas-

ticities come from Chain 1 Week 11, and the Chock Full O’Nuts-on-sale
elasticities come from Chain 1 Week 25. The linear-combining weights

for these patterns are shown in Table 6.2. The idealized elasticities for
these four competitive patterns appear in the appendix (see Table 6.7).

The competitive maps are developed and interpreted in the next section.

Table 6.2: Coordinates of the Idealized Competitive Conditions
Weights on Factors

Competitive Condition 1 2 3 4

Shelf-Price Competition 0.11 –0.08 –0.02 –0.04
Folgers On Sale 0.07 –0.09 0.01 –0.08

Maxwell House On Sale 0.07 –0.10 –0.04 –0.00

CFON On Sale 0.06 –0.03 –0.23 0.32

6.2.2 Competitive Maps: The Structure Over Brands

The common scaling space developed by a three-mode factor analysis
of asymmetric cross elasticities, as well as the two-mode representations

of idealized competitive patterns, both provide maps of competitive in-
teractions, rather than necessarily portraying attribute relations among
the brands. These are competitive maps, rather than product perceptual

spaces. In this illustration all the maps relate to price as an attribute,
since price elasticities are used to develop the maps. In applied con-

texts the maps derived from all other promotional instruments would be
investigated.

A competitive map involves two sets of points plotted in the same

space, corresponding to the two processes reflected in the elasticities.
Elasticities show how a percent change in the price of a brand, j, trans-
lates into change in the market share of brand i. The first process in-

volved deals with how much clout brand j has. We can think of brands
which just seem more able to influence others, or brands which pres-

sure no others. Correspondingly, the first set of points — symbolized by
circles © — represents the way brands exert influence on one another.
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Similar positions for two brands indicate they exert a similar pattern
of influence on the market place. The second process deals with how

able some brands are to resist the advances of competitors, while others
seem quite vulnerable. And so the second set of points — symbolized by

squares 2 — represents the way brands are influenced by competitive
pressures. Similar positions for two brands indicate they are similarly

vulnerablility to pressures from other brands.

Most joint-space, multidimensional-scaling methods deal with differ-

ent rows than columns (e.g., with brands for columns and consumer pref-
erences for row the joint space would locate ideal points in a brand map).

But this multidimensional-scaling method has some very special proper-
ties. Because we are using ratio-scale quantities (i.e., elasticities have a

meaningful zero-point and unit of measure), the origin of the space has
great importance. Most MDS methods are based on interpoint distances
and the origin is arbitrarily placed at the centroid of all the brands —

merely for convenience since the interpoint distances are unaffected by
a translation of origin. But this model doesn’t work with estimates of

interpoint distances. Brands are vectors from a fixed origin. For the ©
brands, the distance of a brand from the origin of the space is a measure

of how much clout the brand has.28 For the 2 brands, the distance from
the origin is a measure of how vulnerability or receptive a brand’s sales

are to price competition.29 Hence, two © brands on the same vector
from the origin exert the same pattern of pressure on the other brands,

but differ in the amount of clout each possesses. Two 2 brands on the
same vector from the origin are pressured by the same competitors, but
could be differentially vulnerable or receptive. A © brand on the same

vector as a 2 brand would exert its greatest cross-elastic pressure on that
2 brand. The cross elasticity falls off as the cosine between the angles of

the brands drops toward zero (brands at right angles). Brands on oppo-
site sides of the origin (angles greater than 90◦) reflect complementary

cross elasticities, rather than competitive pressures.

In the ground, caffeinated coffee market under study there are four

major dimensions describing the relations among brands on each time-
factor. The dimensionality is chosen, as before, by inspecting the vari-

28Formally it is a function of the sum of squares of the cross elasticities of other
brands’ shares with respect to this brand’s price.

29Formally it is a function of the sum of squares of the cross elasticities of this
brand’s share with respect to the other brands’ prices. Elasticities reflect percentage
changes. So if a brand with small share can lose a large percent of its share to other
brands, it can appear far from the origin and be very vulnerable in percentage terms.
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ance accounted for by each dimension. In the appendix to this chapter
Table 6.3 shows the coordinates of the brands in the common row scal-

ing space and the common column scaling space, Table 6.4 lists the
variance on each of the common dimensions for the row space and the

column space, Table 6.5 displays the four planes in the core matrix G,
and Table 6.6 lists the coordinates of the joint-space, building blocks

corresponding to each core plane. Even though these building blocks are
four-dimensional, the linear combinations representing each of these four

special cases are three-dimensional. Any particular competitive pattern
need not involve all the basic factors.

Figure 6.5 portrays the competitive map accounting for 98.7% of
the idealized shelf-price elasticities in Table 6.7. The size of the sym-
bol for each brand represents the distance from the fixed origin of this

space. This reflects the clout or receptivity/vulnerability of the brand.
We see that Folgers and Maxwell House exert a similar pattern of pres-

sure, with Maxwell House having more clout at shelf prices. They are
both aligned to exert the greatest pressure on the premium brands in

the All-Other-Branded category, which are quite vulnerable to their at-
tack. Even though 2 Chock Full O’Nuts is separated from © Folgers and

Maxwell House by a sizeable angle, its extreme receptivity translates into
its being strongly pressured by both Folgers and Maxwell House. The al-

most 180◦ angle between Folgers © and Folgers 2 indicates that Folgers
helps itself quite directly with price cuts. The most extreme example
of this involves Chock Full O’Nuts which has a great deal of clout and

is very vulnerable. The pattern in Figure 6.5 shows Chock Full O’Nuts
competing much more with Folgers than with Maxwell House, while be-

ing very receptive to its own price moves. © Master Blend is positioned
to exert its greatest pressure on Folgers at shelf prices. But Folgers is

not in the best position to return the pressure on either Regular Maxwell
House or Master Blend.

Yuban (unlabelled in the figure) resides at the fixed origin of this
space, and the private-label brands PL 1 and PL 2 sit very near the

origin, exhibiting no role in the competitive interplay. This is expected
since the shelf-price map reflects an idealization of condition in Chain 1
which does not distribute Yuban or its own private label. If we were to

create idealized elasticities closer to the position of a shelf-price week in
Chain 2, which distributes this brand, it might behave more like the other

premium brands in the AOB category. If we were to create idealized
elasticities closer to the position of a shelf-price week in Chain 3, we
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Figure 6.5: The Competitive Map — Shelf Prices
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would see a greater role for the private labels.30

When Folgers goes on sale the pattern in Figure 6.6 is operative

(accounting for 99.8% of the corresponding idealized elasticities in Ta-
ble 6.4). First, note that Folgers has less clout on sale. Shelf-price

elasticities are like potential energy. When the brand actually goes on
sale some of this energy is dissipated, in this case by being translated into

sales. The reduction in the angle between © and 2 for Folgers on sale
indicates at least a small dissipation of Folgers’ influence over its own

market share. An approximately 90◦ between © and 2 for Folgers would
indicate that Folgers cannot help itself by further price reductions. On

sale, Folgers is substantially less vulnerable to both Chock Full O’Nuts
and AOB. Folgers can still attack the All-Other-Branded category and
Chock Full O’Nuts, but the reduced shares for these brands during a

Folgers promotion provide less incentive to Folgers.
When Maxwell House goes on sale Figure 6.7 depicts the action. As

clearly indicated Maxwell House puts the greatest pressure on All Other
Branded. While the premium brands which make up the AOB category

possess considerable clout of their own, and are aligned to be able to help
themselves, they are not particularly well aligned to return the pressure

on Maxwell House. Only Chase & Sanborne is aligned for counter attack
and potent enough to be a threat. Chock Full O’Nuts is a potent force

under these market conditions, but is aligned to impact Folgers much
more than it can impact Maxwell House. Note that in the one week of
coincident promotions for Maxwell House and Chock Full O’Nuts (Week

24), the coefficients look like those for Chock Full O’Nuts sale weeks,
rather than other Maxwell House sale weeks (see Figures 6.3 and 6.4).

Brand managers for Maxwell House might do well to incorporate this
information into planning the timing of their promotional events.

When Chock Full O’Nuts goes on sale (see Figure 6.8) it exerts a
great deal of pressure directly on Folgers, which is vulnerable to the

attack. Chock Full O’Nuts also pressures Hills Bros. and Master Blend.
Maxwell House seems not very vulnerable to Chock Full O’Nuts on sale.

Chock Full O’Nuts is not vulnerable to counter attack, although Chase
& Sanborne’s alignment makes it the most potent threat. Almost all the
brands have near-zero loadings on the second dimension — making this

30It has already been noted that Chain 3 has a much higher feature price for the
major brands than the other chains. Combined with the very frequent in-store displays
and lower shelf prices for its private-label brand, the policy seems to be to draw
shoppers in with a major-brand feature and encourage them to switch through the
displays at the coffee aisle.
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Figure 6.6: The Competitive Map — Folgers On Sale
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Figure 6.7: The Competitive Map — Maxwell House On Sale
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Figure 6.8: The Competitive Map — Chock Full O’Nuts On Sale
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map almost two-dimensional.

Overall, these patterns show substantial asymmetries which would

not have been revealed by any other market-structure map.

There are very simple relations between the maps and the idealized

elasticities in Tables 6.7. As implied by equation (6.9), one need only
multiply the clout coordinate of brand j times the receptivity coordi-

nate of brand i, and sum over dimensions to produce the elasticity of
brand i’s market share with respect to brand j’s price. For those who

are more comfortable with maps than with matrices, these maps provide
a visual representation of the richly asymmetric competitive patterns re-

sulting from price changes in the coffee market. As in other categories
of frequently purchase branded goods, price is used as a major weapon
of promotional strategy. What one can read from these maps is what

brands constitute the major threats to others with their price policy
and where the major opportunities for competitive advantage may re-

side. These maps offer many signals which are new and very different
from the market-structure maps of the past. Only a very few of these

signals have been mentioned in this illustration. The full meaning of
these signals is better interpreted by managers and management scien-

tists involved in these markets than by academic researchers involved in
methods development.

6.3 *Elasticities and Market Structure

The value of much of the developments so far rests on the propriety of
using cross elasticities to reflect market structure. There are at least

three deficiencies to elasticities as measures of competition:31 1) they
are static measures as they assume no competitive reaction to change

in a marketing-mix variable, 2) because they are static measures, they
do not account well for structural change in markets, and 3) they can

be difficult to measure when price changes are infrequent or are of low
magnitude.

First, both historic lags and competitive reactions can be included
in elasticity calculations. This was indicated by Hanssens,32 although
misspecification of his equation (2) precluded computation. Lagged in-

31Thanks are due to an anonymous reviewer for Management Science who pointed
out these potential problems.

32Hanssens, Dominique M. [1980], “Market Response, Competitive Behavior, and
Time Series Analysis,” Journal of Marketing Research, XXVII (November), 470-85.
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fluences on brand i’s market share can be represented as e
(k)
ijt∗t. This is

the influence that brand j’s price (kth marketing instrument) in historic

time-period t∗ has on brand i’s market share in period t. But for a com-
petitive reaction to influence a current elasticity, a combination of events

must occur. There must be an action involving marketing instrument
k′ by some brand i′ in historic period t′ which produces a significant

price reaction by brand j in some historic period t∗, and there must be a
nonzero elasticity for the effect of brand j’s price in period t∗ on brand
i’s market share in period t. We can represent the reaction elasticity

as ek′i′t′Rkjt∗ , where the subscripts before R indicate the antecedents

producing the reaction, while the subscripts after R indicate where the

reaction occurs. Then the market-share cross elasticity is represented as:

e
(k)
ijt =

t∑

t∗=(t−h)

e
(k)
ijt∗t +

t∑

t∗=(t−h)

t∑

t′=(t∗−h)

K∑

k′=1

N∑

i′=1

ek′i′t′Rkjt∗ · e
(k)
ijt∗t (6.10)

where h is the maximum relevant historic lag. Note that if either ek′i′t′Rkjt∗

or e
(k)
ijt∗t is zero, the entire term makes no contribution to e

(k)
ijt . In the cur-

rent illustration there were no significant lagged effects (or cross effects)
on market share, nor were there any significant competitive reactions.

Given the highly disaggregate nature of the modeling effort (i.e., mod-
eling marketing shares for brands in each grocery chain each week) and

the irregular timing of major promotions, the absence of such effects is
not surprising.

Second, exploration of the time mode (chain-weeks in the current

illustration) can help minimize the limitations of elasticities in reflecting
structural changes. While a regular lag structure may not be evident,

one of the attractive features of the three-mode factor analysis is in its
ability to highlight structural events which occur at irregular intervals

over the study period. In the coffee market, promotions for major brands
signalled the big structural changes. These will most likely occur at

irregular intervals to minimize competitive reaction as well as consumers
delaying purchase in the certain anticipation of a sale for their favorite

brand.
Third, if there is too little variation in a marketing instrument, elas-

ticities can be hard to estimate accurately. In the retail coffee market

there are very frequent price promotions, features, displays, and con-
siderable couponing activity. About 50% of all sales are made on a

promotion of some kind. But in warehouse-withdrawal data, more tem-
porally or regionally aggregated data, or in categories with less frequent
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retail promotions (e.g., bar soap), lack of variation would be more of a
concern.

The benefits of this style of analysis become clearer when we consider
the task of intelligently using scanner data for brand planning. We could

plot sales, prices, features, displays, and coupons for each brand, each
chain and each week. But the points of information become so numerous

that without further guidance, the ability to assimilate soon suffers. In
the current illustration this would entail a scatter plot for each brand in
each chain over 52 weeks or a pie chart summarizing each week in each

chain over all the brands. Market-response models provide an enormous
concentration of information. But how do we assimilate the implications

of a market-response model? Simulations and forecasts are very valu-
able, but they reverse the concentration of information achieved by the

market-response model. For each simulation run we must track the com-
petitive strategies of all brands as well as all the outcomes — estimates

of sales and profits for all manufacturer and all retailers.

The parameters of the market-response model can be a source of
insight. We could even factor the matrix B using the model in equa-

tion (6.9). While we might obtain some sense of the structure of com-
petitive forces, we would have no idea of how that structure changes with

changes in competitive patterns. The notion of reflecting changes is one
of the most basic and appealing features of elasticities.

Elasticities can provide quantitative understanding of a market. Like
simulations, however, elasticities reverse the information concentration
achieved by market-response models. Using asymmetric three-mode fac-

tor analysis summarizes the 22,464 elasticities (3 Chains × 52 Weeks
× [12 × 12] Brands) into only two plots for the factors differentiating

grocery chains over weeks, and a plot for each of the idealized compet-
itive situations. The plots representing the structure over time can be

helpful in planning the timing of promotions, tracking promotional ef-
fectiveness, and detecting promotional wear-out. Looking at over-time

patterns helps counteract some of the limitations imposed by the static
nature of each week’s elasticity estimates. In the analysis of these data

aggregated to the weekly level over grocery chains, these plots have re-
vealed the market-wide expansion of elasticities in key pay-weeks. It is
during the key-pay week that all Federal checks (Social Security, Aid to

Families with Dependent Children, welfare, government pensions, etc.)
arrive. These Federal checks are often cashed at supermarkets and then

banked in the form of food purchases for the month. These first-week
customers, typically being of limited means, are some of the most price-
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sensitive shoppers and are purchasing a disproportionate share of their
monthly needs in this week.33 Other applications could reveal temporal

or seasonal patterns of interest. This format signals what are the sys-
tematic structural events in a dataset which otherwise might be too large

to explore. The structure over brands is contained in figures describing
the idealized competitive contexts which characterize this market. Shelf-

price competition, and the structure of competition during sales for each
of the three largest-selling brands, are differentiated in a manner which

could never be detected from the average elasticities. The planning ex-
ercise in Chapter 7 shows how the competitive maps can be used to help

focus the path of inquiry and limit the number of simulations.

6.4 *Interpretive Aids for Competitive Maps

The limitations of this approach stem mainly from its being descriptive,

rather than prescriptive. The dimensions of a competitive map describe
the terrain. While there is no guarantee that the map can easily be

labelled in terms of brand attributes, the structure over brands could
perhaps be made more useful if ideal points or property vectors were
located in the space. Ideal points describe the most preferred position

in a perceptual map. Property vector describe directions such as the
direction of increasing economy or sportiness often seen in maps of the

car market. Two special logit models34 were designed to do this for
competitive maps. These models provide an external analysis of prefer-

ence, perceptions, or brand attributes. Internal analysis of preferences
attempts to develop both the brand map and ideal points from ratings or

ranking of consumer preferences. In external analysis of preferences we
must have a pre-existing brand map, and we simply wish to estimate the

most popular region(s) of the map. The competitive map contains the
scale values for the brand — fulfilling the need for a pre-existing brand
map, while sales data provide the relative choice frequencies required for

locating the ideal points for each week.35

33Special thanks is due to J. Dennis Bender and John Totten for helping me under-
stand the meaning and significance of this finding.

34Lee G. Cooper & Masao Nakanishi [1983b], “Two Logit Models for External
Analysis of Preferences,” Psychometrika, 48, 4, 607-20.

35The relative choice frequencies were originally supposed to come from paired-
comparison judgments gathered in an experimental setting, but we can substitute the
number of choices (sales) for on brand compared to the number of choices (sales) for
the other brand for the required paired comparisons as long as most of the buyers
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The basic idea of this style of analysis is that preference increases as
brands get closer to an ideal point in a map. We can consider a distance

function d∗i which reflects how far brand i is from the ideal location.

d∗i =
H∑

h=1

βhi(Xhi − X∗
h)2

where:

Xhi = the known coordinates of brand i on the given dimensions h =
1, 2, . . . , H of a map

X∗
h = the unknown coordinates of the ideal point on dimension h, and

βh = the unknown weights reflecting the importance of dimension h in

capturing the preferences.

The statistical problem is to be able to estimate the ideal coordinates

X∗
h and the dimensional importance weights βh from the relative choice

frequencies. Let f̄ij be the expected relative frequency of choice of brand

i over brand j.
f̄ij + f̄ji = 1

The model for f̄ij is given by:

f̄ij =
exp(d∗i )εi

exp(d∗i )εi + exp(d∗j)εj
(6.11)

where d∗i is as previously defined and εi is a log-normally distributed

specification-error term, unique to the alternative.36 This model actually
allows for three different views of the relations between ideal points and

choices. If all the weights βh are negative, we have the standard ideal-
point model in which preference declines smoothly in any direction away

from the ideal point. This is portrayed in Figure 6.9 with the ideal point
at (0,0). But sometimes preferences are more readily characterized by

what we don’t like than what we do. In such cases all the weights βh are
positive and we can locate an anti-ideal point, the least desirable point.

purchase a single unit (pound of coffee, for example) at a time.
36The function in equation (6.11) is formally derivable from the generalized ex-

treme value distribution for a random utility model. See appendix 2.9.3 and Yellott,
J. I. [1977], “The Relationship Between Luce’s Choice Axiom, Thurstone’s Theory
of Comparative Judgments, and the Double Exponential Distribution,” Journal of

Mathematical Psychology , 15, 109-44, for further details.
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As is pictured in Figure 6.10 preferences increase as we diverge in any
direction away from the anti-ideal point at (0,0). If some of the weights

βh are positive and others are negative, preferences are represented by a
saddle point, as is shown in Figure 6.11. The classic example of saddle

points involves tea drinks. Some people like iced tea and some like hot
tea. But on the temperature dimension there is an anti-ideal point at

tepid tea. On the sweetness dimension some people like two lumps of
sugar and their preference declines if either more or less sugar is used.

The combination of an anti-ideal dimension of temperature and the ideal
dimension of sweetness creates a saddle point.

Figure 6.9: Preference and the Ideal Point

In addition to ideal dimensions and anti-ideal dimensions there are
many dimensions on which only the most preferred direction is known.

Price is an obvious example. The ideal price is almost always lower
than any offered price. We know the direction of increasing preference

but cannot isolate an ideal point. Such special cases are known as vector
models.37 Corresponding to the logit ideal point model in (6.11) we have

37The ideals in a vector model do not have to be infinite. Any time the ideal is
outside the configuration of points in a map a vector model may be more apt than an
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Figure 6.10: Preference and the Anti-Ideal Point

the following logit vector model.

f̄ij =
exp(

∑H
h=1 αhXhi)εi

exp(
∑H

h=1 αhXhi)εi + exp(
∑H

h=1 αhXhj)εj

(6.12)

where αh is the coordinate of the preference vector on dimensions h
(the greater the coordinate the more influence that dimension has on

preference).

Both the logit ideal-point model and the vector model can be esti-
mated by regression techniques. Taking the logit of the expected, relative

choice frequencies, reveals a linear form

log

(
fij

fji

)
= d∗i − d∗j + (log εi − log εj) .

We can see how to estimate both the importance weight and the ideal

ideal point model.
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Figure 6.11: Preference and the Saddle Point

coordinate on each dimension by noting

d∗i − d∗j =
∑H

h=1 βh[(X2
hi − 2XhiX

∗
h + X∗2

h ) − (X2
hj − 2XhjX

∗
h + X∗2

h )

=
∑H

h=1 βh[X2
hi − X2

hj − 2X∗
h(Xhi − Xhj)]

=
∑H

h=1[βh1(X
2
hi − X2

hj)− βh2(Xhi − Xhj)]

where the importance of each dimension is reflected in the parameter

associated with the difference in squared scale values (βh2 = βh), and
the ideal coordinate on each dimension can be found by solving a simple
function involving the parameter associated with the difference in scale

values (βh1 = −2βhX∗
h).

Taking the logit of the observed, relative choice frequencies reveals

the estimation form of the ideal-point model as:

log

(
fij

fji

)
=

H∑

h=1

βh1(Xhi − Xhj) + βh2(X
2
hi − X2

hj) + uij (6.13)

where uij is a stochastic-disturbance term which represents the com-
bined influences of specification errors εi and εj and sampling error for
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the departure of the observed, relative choice frequency, fij , from its
expectation, f̄ij.

38

The logit vector model is estimated as:

log

(
fij

fji

)
=

H∑

h=1

αh1(Xhi − Xhj) + uij . (6.14)

The difference between these two models is simply that the ideal-

point model has one additional parameter associated with the differences
in the squares of the scale values. Thus it is very straightforward to test if

the logit ideal-point model or the logit vector model is most appropriate.
Estimation and reduced-model tests are discussed in the original article.

There are several uses for this style of analysis. First, sales data

from each time period or region can be transformed into relative choice
frequencies and used to locate ideal points. If panel data are available, we

could locate ideal points for each segment. In surveys consumers could
be asked to pick any of a variety of attributes which are descriptive of

each brand. The relative choice frequencies could come from such pick-
any data as well as from more traditional, paired comparisons. The
added benefit is that we can readily assess if an attribute vector or an

ideal point is most appropriate for each property fit into the competitive
map.39

Although we may always attempt to imbed property vectors in the
space to help interpret the dimensions, the fit may not be good even in
a good map. A map does not tell us how to reposition a brand to avoid

competitive pressures. It merely reflects what those pressures are.

Kamakura and Srivastava40 develop an alternative to the market-

share model and the logit ideal-point model. They first create a pro-
bit version of the Cooper and Nakanishi logit ideal-point model (which
they call the CN model), and then further generalize that model to esti-

mate the distribution of ideal points in any choice situation. In so doing
they end up with a model which can predict choice probabilities (market

38The nonspherical error-covariance matrix requires generalized least-square esti-
mation procedures which are fully presented in Cooper & Nakanishi [1983b].

39The ideal points or vector could be positioned with respect to either the scale
values representing the clout of each brand or its vulnerability. For most applications
it is probably appropriate to use the scale values representing clout. For sales data
we would then see how clout translates into sales.

40Kamakura, Wagner A. & Rajendra K. Srivastava [1986], “An Ideal-Point Proba-
bilistic Choice Model for Heterogeneous Preferences,” Marketing Science , 5, 3 (Sum-
mer), 199-218.
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shares) in a way not bound by Luce’s IIA assumption. Their models can
be thought of as asymmetric, probit-based alternatives to asymmetric

market-share models.

In comparing these efforts there are two technical issues and one
general issue. Kamakura and Srivastava [1986] claim the CN model is a

Luce-type model, subject to the problems inherent in the IIA assump-
tion. When the CN model is used as they use it, this is true. But used
as part of the system of models for competitive analysis, it is not true.

In any system of models the problem of differential substitutability need
only be solved once. In our case, the asymmetric market-share model

solves this problem by estimating specific cross-competitive effects and
by modeling the distinctiveness of marketing activities with zeta-scores

or exp(z-scores). Both the competitive maps and the ideal points imbed-
ded into them are not limited by Luce-type assumptions. The second

technical point concerns the Kamakura and Srivastava claim that the CN
model estimates only a single ideal point. The CN model was developed

to estimate an ideal point in each time period, each consumer segment,
each region, or each other delineation of choice situations. The example
included in the original article (Cooper & Nakanishi [1983b]) specifically

estimated ideal points for differing orders-of-presentation, just to illus-
trate this potential. In our current example there could be 156 ideal

points — one for each store in each week. The idea is that, in coordi-
nation with market-share models and competitive maps, we could see

how the competitive structure changes over time or competitive con-
ditions and how those changes were translated into sales (or shares).

Kamakura and Srivastava estimate the distribution of ideal points in
any one context, but their efforts would have to be extended to estimate

the distribution of ideal points in possibly many different competitive
contexts.

The general issue involves the prediction of choice probabilities or
market shares. Kamakura and Srivastava indicate that their methods

were developed especially for predicting shares of choices. It is an em-
pirical matter, but hard to imagine that a mapping procedure could pre-

dict market shares better than a market-share model. In our multimodel
system there is specialization of purpose. The forecasting is done by the
market-share model. Visualizations of competitive structures are accom-

plished with maps, while interpretation and opportunity analysis may be
aided by ideal points. Thus no single model in the system is required to

do more than what it does best. The Kamakura and Srivastava model
seems to provide representations useful in product positioning or reposi-
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tioning, which competitive maps are not designed to do. But forecasting
market shares does not seem to be their model’s strength.

The market-share models, the procedures for estimating elasticities
from those models, three-mode factor analysis for representing the struc-

ture underlying those elasticities both over time and over brands, and the
ideal-point model are a major part of the system of models for compet-

itive analysis. Rather than proposing specific behavioral models of con-
sumer response, these models provide the structural relations between

the entities in a market information system. Although this system of
models can be used for many purposes, the scientific goal is to provide a

more systematic basis for using market information, while the practical
goal is to provide a graphic understanding of the competitive structure
and dynamics of a marketplace. Chapter 7 discusses how these methods

can be used to provide a firmer empirical base for brand planning.

6.5 *Appendix for Chapter 6

This appendix presents the tables which resulted from the asymmet-
ric three-mode factor analysis of the coffee-market example. While the

technical development in the body of the chapter focused on the basic
matrix concepts involved in the analysis, this appendix will deal more

with the estimation methods. In particular the focus will be on the
eigenvalue-eigenvector approach, in the belief it is easier to understand

the mechanics of three-mode analysis from this perspective. Once the
problem to be solved is understood it is easier to accept that alternating
least-squares procedures (see Kroonenberg [1983]) can provide an overall

least-squares solution to the problem, while the eigenvalue-eigenvector
approach provides just an approximate least-squares solution (albeit a

good approximation).
To understand the three views of the data we obtain from three-mode

analysis it helps to review briefly some properties of two-mode tables.
Consider a matrix nXp with n rows for individuals and p columns for

variables . Let us assume X is of rank r ≤ min(n, p). We can always
represent X as a triple product.

nXp = nWrΛrU
′
p

where nWr is an orthonormal matrix containing coefficients relating the
individuals to the factors , rΛr is a diagonal matrix containing the square

roots of the variance of each factor on the diagonal, and pUr is an or-
thonormal matrix containing coefficients which relate the variables to
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the factors. We speak of factors loosely, since this basic-structure model
relates more to a principal-axes model than the formal factor-analytic

model. Since W is orthonormal we know

rW
′
nWr = Ir .

If we form the scalar products showing the associations between variables

we get

pX
′
nXp = pUrΛ

2
rU

′
p .

Since U is orthonormal we know

rU
′
pUr = Ir .

If we form the scalar products showing the associations between individ-

uals we get

nXpX
′
n = nWrΛ

2
rW

′
n .

In this form we should be able to recognize W as the left-principal vectors

(also known as eigenvectors or characteristic vectors), and U as the right
principal vectors and the diagonal entries in Λ2 as the eigenvalues (also

known as latent roots or characteristic roots). We have long had the
numerical algorithms to solve for the eigenvalues and eigenvectors of the

symmetric matrices X ′X and XX ′. Algorithms which solve directly for
W , Λ and U are called singular-value-decomposition algorithms, where
Λ contains the singular values (square roots of the eigenvalues).

This system sets up a series of orthogonal (independent) axes. The
axes are linear combinations of the original variables. The first axis con-

tains the greatest variance (information) which any single axis can hold;
the next contains the greatest variance in any direction independent of

the first axis. The third axis contains the greatest amount of variance
in any direction that is independent of the first two, etc. The value of

this kind of a representation becomes more apparent when we realize
that if we discard the smallest dimension, we retain the most informa-

tion we can pack into an (r − 1)-dimensional representation. The best
two-dimensional approximation to the information in the original matrix
comes from retaining the first two principal axes. The concept of approx-

imating the information in a matrix, by a lower-dimensional system has
been around for over 50 years.41 It underlies much of the thinking which

led Tucker to develop three-mode factor analysis.

41Eckart, Carl & Gale Young [1936], “The Approximation of One Matrix by Another
of Lower Rank,” Psychometrika , 1, 211-18.
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The common scaling space for the columns can be found from a singu-
lar value decomposition of a matrix E formed by vertically concatenating

the elasticity matrices for each chain-week:

Ej =




E(1)

E(2)

...

E(T )




.

We need only the right principal vectors of this matrix which are the
same as the eigenvectors of jE

′Ej. As previously stated, these vectors
will reflect the similarity among the columns of an elasticities matrix —

the structure underlying how brands exert influence on the marketplace.
These vectors appear in Table 6.3 as the Column Space.

Table 6.3: Common Scaling Space
Row Space Column Space

Brand 1 2 3 4 1 2 3 4

1 0.39 –0.10 0.59 –0.33 0.38 –0.25 0.03 –0.72
2 0.14 –0.24 0.05 –0.39 0.34 –0.59 0.21 0.56
3 0.06 0.22 0.31 0.16 –0.38 –0.02 –0.06 0.29
4 0.00 –0.23 0.33 –0.21 –0.09 0.08 0.13 –0.01
5 –0.87 –0.26 0.34 –0.06 –0.73 –0.26 –0.00 –0.23
6 –0.04 0.01 0.05 –0.08 0.06 0.01 –0.07 –0.04
7 0.10 0.14 0.53 0.66 0.17 0.21 –0.85 0.14
8 –0.21 0.86 0.10 –0.34 0.08 0.67 0.41 0.10
9 0.06 0.04 –0.04 –0.03 0.11 0.12 0.17 0.00

10 0.04 0.06 0.19 –0.34 0.07 0.03 0.04 –0.08

The corresponding eigenvalues (shown in Table 6.4 as the Clout Fac-

tors) are used to select the dimensionality of the common scaling space
for columns. Note that the last large drop is from the 7.4% of the vari-

ance in the fourth factor to the 4.1% of the variance contained in the
fifth factor, so that four factors are retained for the common scaling

space matrix C introduced in equation (6.4).
The common scaling space for the rows can be found from a singular

value decomposition of a matrix E formed by horizontally concatenating

the elasticity matrices for each chain-week:

iE = (E(1)|E(2)| · · · |E(T )) .

We need only the left principal vectors of this matrix which are the same
as the eigenvectors of iEEi

′. These vectors will reflect the similarity
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Table 6.4: Dimensionality of Common Scaling Space
Clout Factors Vulnerability Factors

Eigen- Percent Eigen- Percent
values Variance value Variance

1 46895.1 49.4% 45716.4 48.1%
2 19917.4 21.0% 20617.8 21.7%

3 9297.1 9.8% 9661.6 10.2%
4 7070.7 7.4% 7287.2 7.7%

5 3866.6 4.1% 5822.9 6.1%
6 3079.8 3.2% 2600.2 2.7%
7 2237.8 2.4% 1702.9 1.8%

8 1542.3 1.6% 660.0 0.7%
9 1050.8 1.1% 575.6 0.6%

10 0.0 0.0% 312.8 0.3%

among the rows of an elasticities matrix — the structure underlying how
brands are influenced by marketplace forces. These vectors appear in

Table 6.3 as the Row Space.
The corresponding eigenvalues (shown in Table 6.4 as the Vulnerabil-

ity Factors) are used to select the dimensionality of the common scaling
space for rows. It is possible, though inconvenient, that the dimensional-

ity of the row space and that of the column space could differ. In fact, in
this case there is some evidence that there might be a fifth factor among

the rows. For, though there is a striking alignment of the variance con-
trolled by the first four factors in the two spaces, the fifth factor among

the rows is somewhat larger than that for the columns. It is a minor
point, indeed, but choosing a common dimensionality for both the row
space and column space is advisable. In this case we decided to select

four factors for each space.
So far we have seen that there are two ways to organize the data, each

corresponding to a different view of the brands. There is yet another
way to view the data. Each matrix E(t) could be strung out into a

column vector, et, containing m2 elements. These column vectors could
be horizontally concatenated into a matrix Et

Et = (e1|e2| · · · |eT) .

We may represent Et by
Et = SW
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where W contains the right principal vectors of Et — the elements wtl

introduced in equation (6.8). The right principal vectors of this matrix

are the same as the eigenvectors of tE
′Et. These vectors will reflect the

similarities among stores and weeks — the structural forces leading to

the representations in Figures 6.3 and 6.4.
These three different views of the data are tied together by the core

matrix, G, introduced in equation (6.4). The core planes can be found
one at a time, by taking each column of S and reorganizing it into an

m × m matrix S(l), essentially reversing the process by which E(t) was
strung out into et. The lth layer or the core matrix can be found from

qG
(l)
q = qR

′S(l)Cq .

The core matrix is presented in Table 6.5

In the general three-mode factor-analysis model, the core matrix is
very important in understanding how factors on one mode relate to fac-

tors on the other modes. We simplify the issue in this special case by
diagonalizing each core plane as shown in equation (6.5), and forming

the matrices iR
(l)
q and qC

(l)
j developed in equations (6.6) and (6.7) and

displayed for the coffee-market example in Table 6.6.
These joint-space coefficients are the building blocks from which the

idealized elasticities are created from equation (6.8) corresponding to
particular competitive patterns of interest. The idealized elasticities for

the four conditions highlighted in the coffee-market example are pre-
sented in Table 6.7.

As a result of this presentation we hope it will be clearer from where
the spatial representations come. While the eigenvalue-eigenvector de-

velopment can help provide such insight, numerically it creates only an
approximate least-squares solution to the systems of equations. Kroo-

nenberg [1983] shows how all the components can be estimated using
an alternating least-squares (ALS) algorithm. Whether this numerical
refinement makes a practical difference will have to be determined in

future research.
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Table 6.5: The Core Matrix for the Coffee-Market Example

Core Plane 1
1 2 3 4

1 202.01 5.13 3.00 1.80
2 –10.62 132.57 6.56 –5.60

3 –2.79 –10.50 –39.02 –32.94
4 –6.84 –0.05 –42.68 21.53

Core Plane 2

1 2 3 4

1 –1.43 18.90 –34.48 9.81

2 7.04 –3.51 –19.57 7.57
3 –17.16 15.74 –29.30 13.86

4 32.10 7.42 –35.47 0.49

Core Plane 3
1 2 3 4

1 –8.33 –9.61 –22.26 –4.59
2 2.44 –0.73 –13.13 –1.30

3 45.48 4.60 –14.71 –1.37
4 –18.91 7.39 –18.53 6.36

Core Plane 4

1 2 3 4

1 7.69 3.08 –2.25 3.85

2 –3.25 –9.97 –2.74 –4.10
3 –21.48 –4.62 5.76 2.34

4 1.98 1.25 –0.09 –0.20
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Table 6.6: Joint-Space Coefficients for Chain-Week Factors

Chain-Week Factor 1
Vulnerability Factors Clout Factors

Brand 1 2 3 4 1 2 3 4

1 5.65 1.47 1.87 3.87 –5.33 –2.65 –0.78 –4.50
2 2.42 2.56 –1.75 1.96 –5.06 –6.67 2.71 2.98
3 0.43 –2.11 2.78 0.52 5.36 –0.40 0.05 1.82
4 0.28 2.93 0.67 2.27 1.32 0.99 0.89 –0.22
5 –12.24 3.90 1.18 1.63 10.39 –3.02 –0.06 –1.43
6 –0.48 –0.08 –0.08 0.57 –0.86 0.05 –0.57 –0.14
7 0.81 –0.80 6.39 –0.96 –2.13 1.52 –6.29 1.93
8 –3.56 –9.76 –0.57 2.23 –1.15 8.17 2.77 0.27
9 0.78 –0.54 –0.33 –0.01 –1.62 1.60 1.18 –0.18

10 0.63 –0.66 –0.51 2.36 –0.93 0.41 0.11 –0.53

Chain-Week Factor 2
Vulnerability Factors Clout Factors

Brand 1 2 3 4 1 2 3 4

1 2.27 4.50 –0.00 –0.32 –1.61 –3.78 0.42 –0.54
2 –1.62 2.29 –0.10 –0.62 –1.61 –2.02 –0.36 2.23
3 2.79 0.46 0.11 0.61 0.36 2.60 –0.06 0.68
4 –0.34 2.42 0.14 –0.43 –0.91 0.62 –0.02 –0.29
5 –3.77 0.36 0.66 0.43 –2.19 3.32 0.39 0.67
6 –0.32 0.46 0.02 0.14 0.55 –0.39 0.02 –0.06
7 6.07 –0.64 0.33 0.11 7.38 –0.26 0.07 0.17
8 –0.27 0.82 –0.12 3.08 –0.96 0.81 –0.36 –2.09
9 0.06 0.03 –0.06 0.05 –0.79 –0.45 –0.11 –0.51

10 –0.61 2.21 –0.04 0.43 –0.23 –0.46 0.02 –0.26

Chain-Week Factor 3
Vulnerability Factors Clout Factors

Brand 1 2 3 4 1 2 3 4

1 4.31 1.09 –0.21 –1.47 2.81 –0.38 0.37 –2.28
2 0.96 –1.22 –0.17 –1.35 1.71 –1.36 –0.64 –0.91
3 1.78 1.73 0.08 0.47 –2.73 0.64 –0.18 0.54
4 2.53 –0.73 –0.19 –0.33 –0.74 –0.69 0.05 0.22
5 2.93 –3.73 –0.02 2.35 –5.15 0.61 0.10 –1.23
6 0.55 –0.30 0.02 –0.09 0.52 0.34 0.02 –0.04
7 2.01 3.77 –0.08 1.89 1.99 4.82 –0.02 1.04
8 2.08 –0.01 0.72 –0.57 0.43 –2.61 0.20 2.36
9 –0.22 0.14 0.02 –0.26 0.68 –1.12 0.04 0.37

10 2.02 –0.59 0.05 –0.92 0.47 –0.26 0.06 –0.07

Chain-Week Factor 4
Vulnerability Factors Clout Factors

Brand 1 2 3 4 1 2 3 4

1 2.04 –1.11 –0.05 1.01 –1.31 1.98 0.03 –0.99
2 –0.12 –0.82 –0.08 0.26 –0.44 0.59 0.13 1.20
3 1.48 0.29 0.05 0.32 1.70 –0.55 –0.03 0.49
4 1.32 –1.01 –0.04 0.11 0.46 –0.38 0.01 –0.16
5 2.77 –0.56 –0.03 –1.45 3.78 0.61 –0.04 –0.24
6 0.34 0.02 –0.01 –0.01 –0.37 0.15 –0.01 –0.02
7 2.09 –0.27 0.15 0.33 –2.04 0.34 –0.15 0.65
8 1.89 2.74 –0.05 0.22 –0.94 –2.34 0.02 –0.57
9 –0.22 0.13 –0.01 0.10 –0.51 –0.45 0.03 –0.19

10 1.00 0.03 –0.06 0.29 –0.31 0.05 0.01 –0.17
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Table 6.7: Elasticities for Idealized Competitive Conditions

Idealized Shelf-Price Elasticities
Fol- Max Mstr Hills CF Yu-
gers Hse Bln Bros. ON ban C&S AOB PL1 PL2

Fo –3.92 –1.32 2.90 0.98 4.39 –0.64 –2.81 1.14 –0.25 –0.48
MH –2.43 –2.78 1.29 0.14 0.80 0.01 2.56 0.98 –0.33 –0.23
MB 0.42 2.56 0.18 0.30 1.29 –0.34 –3.96 –0.61 0.18 –0.04
HB –1.41 –0.93 0.00 0.18 –1.65 0.02 0.80 2.43 0.51 0.05
CF 4.63 4.17 –6.82 –1.60 –15.91 1.27 5.68 4.77 2.59 1.24
Yu 0.12 0.46 –0.25 –0.14 –0.79 0.07 0.51 –0.05 0.05 0.02
CS 0.45 2.43 0.16 1.16 2.35 –0.74 –8.69 1.75 1.00 0.14
OB 3.84 8.78 –1.50 –1.58 –1.78 0.32 0.28 –7.31 –0.94 –0.11
P1 –0.25 –0.14 0.46 0.03 1.05 –0.06 –0.11 –0.63 –0.26 –0.10
P2 –0.70 0.85 0.39 –0.23 –0.18 0.04 1.06 –0.81 –0.28 –0.15

Idealized Folgers Sale-Price Elasticities
Fol- Max Mstr Hills CF Yu-
gers Hse Bln Bros. ON ban C&S AOB PL 1 PL 2

Fo –0.90 –0.06 0.76 0.41 1.50 –0.26 –1.91 0.51 0.06 –0.10
MH –1.03 –1.46 0.47 –0.06 0.01 0.09 1.99 0.31 –0.22 –0.10
MB 0.70 1.75 –0.21 0.21 0.47 –0.20 –2.89 –0.16 0.27 0.06
HB –0.13 –0.16 –0.56 –0.05 –1.89 0.11 0.81 1.35 0.40 0.13
CF 2.91 2.66 –4.61 –1.21 –11.20 0.93 4.83 3.19 1.68 0.82
Yu 0.19 0.33 –0.27 –0.12 –0.72 0.07 0.44 –0.01 0.05 0.04
CS 0.78 1.82 –0.18 0.83 1.45 –0.52 –6.50 1.34 0.82 0.17
OB 2.55 5.17 –1.32 –0.99 –2.01 0.27 0.47 –3.81 –0.36 0.03
P1 –0.17 –0.11 0.31 0.03 0.72 –0.04 –0.12 –0.40 –0.16 –0.07
P2 0.15 0.74 –0.24 –0.27 –0.89 0.11 0.97 –0.49 –0.07 –0.01

Idealized Maxwell House Sale-Price Elasticities
Folg Max Mstr Hills CF Yu-
gers Hse Bln Bros. ON ban C&S AOB PL1 PL2

Fo –2.11 –0.40 1.73 0.74 3.09 –0.49 –3.03 0.76 –0.04 –0.26
MH –1.53 –1.80 0.72 –0.05 0.07 0.09 2.45 0.46 –0.27 –0.15
MB 0.47 1.89 0.15 0.39 1.42 –0.34 –4.00 –0.22 0.24 0.00
HB –0.82 –0.52 –0.03 0.09 –1.08 0.02 0.58 1.43 0.30 0.03
CF 2.64 2.19 –4.18 –1.21 –10.27 0.92 5.18 2.61 1.40 0.72
Yu 0.09 0.27 –0.17 –0.11 –0.54 0.06 0.45 –0.08 0.01 0.01
CS 0.56 2.09 0.23 1.18 2.76 –0.75 –8.66 1.56 0.91 0.13
OB 2.66 5.48 –1.00 –1.01 –0.97 0.21 0.11 –4.79 –0.63 –0.06
P1 –0.14 –0.08 0.28 0.02 0.64 –0.04 –0.08 –0.39 –0.16 –0.06
P2 –0.32 0.56 0.18 –0.20 –0.22 0.05 0.89 –0.65 –0.20 –0.09

Idealized Chock Full O’Nuts Sale-Price Elasticities
Folg Max Mstr Hills CF Yu-
gers Hse Bln Bros. ON ban C&S AOB PL1 PL2

Fo –7.85 –2.70 5.99 1.90 9.26 –1.27 –5.31 1.70 –0.70 –1.01
MH –3.41 –2.69 1.84 0.24 1.18 –0.08 2.44 1.19 –0.37 –0.34
MB –1.16 1.31 1.77 0.83 4.48 –0.67 –5.49 –0.62 –0.15 –0.29
HB –4.01 –2.22 2.71 0.78 3.53 –0.46 –0.87 1.32 –0.32 –0.45
CF 0.66 –0.37 –0.44 –0.46 –0.91 0.28 2.50 –0.98 –0.31 0.02
Yu –0.49 –0.10 0.44 0.03 0.66 –0.05 0.11 –0.32 –0.18 –0.10
CS –1.08 1.73 1.86 1.69 5.92 –1.13 –10.78 1.34 0.61 –0.15
OB 1.44 4.66 1.17 –0.62 4.23 –0.17 –1.58 –7.03 –1.60 –0.48
P1 0.02 0.10 0.01 –0.04 0.00 0.01 0.14 –0.18 –0.05 –0.01
P2 –2.80 –0.69 2.34 0.32 3.41 –0.32 –0.16 –0.89 –0.73 –0.48
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Chapter 7

Decision-Support Systems

The main thrust of this book has been the analysis of market-share fig-
ures with an explicit objective of improving the marketing manager’s

understanding of the market and competition. We have presented in
Chapters 1 through 3 a framework and models which we consider the

best to achieve this end. The data collection and estimation techniques
for calibrating these models were discussed in Chapters 4 and 5. A

competitive-mapping technique which is useful in interpreting the cali-
bration results was presented in Chapter 6. Yet those chapters have not

entirely achieved our objective because the manager is obviously not con-
tent with merely analyzing and describing the competitive interactions

in the marketplace. Whatever understanding the manager gains through
market-share analysis will have to be converted eventually into concrete

marketing programs. We turn next to this last stage of market-share
analysis.

It has been our position in this book that the competitive condi-

tions in a market may be chiefly described by a set of model parameters,
especially the elasticities of market shares with respect to marketing vari-

ables. However, we recognize that designing a marketing program based
on the knowledge of elasticities is not an automatic process. With only a

limited number of brands and marketing variables one may have to deal
with a surprisingly complex pattern of competitive interrelationships,
indicated by the large number of elasticities and cross elasticities. The

manager needs to interpret such a pattern and to select one set of lev-
els for the marketing variables which presumably maximizes the firm’s

(long-term) profits. But there are no easy rules for converting a given
pattern of competition into an implementable marketing program.

219
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Some might think of designing marketing programs as large-scale
mathematical-programming problems, but such a conception is unreal-

istic for several reasons. For one thing, the future environment for a
firm’s marketing program is full of uncertainties which affect its per-

formance. Economic conditions change unexpectedly; variations in con-
sumer tastes are sometimes illogical; weather and climate substantially

impact demand, etc. Statistical decision theory may be employed to
cope with future uncertainties, but its application to market-share anal-

ysis is complicated by the fact that those factors that cause uncertainties
must be explicitly brought into the model and the strength of their in-

fluence must be calibrated beforehand. Many important factors cannot
be treated in this manner. How, for example, does one calibrate the im-
pact of one-time events, such as new governmental regulations, on one’s

market share?

For another thing, even if other uncertain factors can be correctly

guessed, the best (optimal) marketing program for a firm is still depen-
dent on the willful and often unpredictable actions of the competitors.

One may guess competitors’ marketing actions and plan one’s own pro-
gram accordingly. But will they guess that our actions are about to
be modified and adjust their actions again? As we discuss later, game

theory, which is one possible solution technique to decision making under
this type of circular reasoning, is not advanced enough to give the mar-

keting manager practical solutions in competitive situations involving
many brands and a large number of marketing variables.

Lastly, designing an optimal marketing mix (i.e., the best combina-
tion of marketing variable) presumes the existence of a definite objective.

In formal theories the objective is assumed to be maximizing either long-
run or short-run profits, but in many practical decision situations profit
maximization is not always pursued. The real-world managers may have

difficulties in conceptualizing long-run profits, yet they are too astute to
try to maximize short-run profits. In the context of market-share anal-

ysis, it is often a planned level of market share that becomes the main
objective and is pursued vigorously. To complicate the matter further,

the brand manager at a manufacturing firm may have an entirely differ-
ent objective than that of a store manager for a supermarket chain. Both

the brand manager and the store manager may feel that the objective
of the other is wrong. There is no sophisticated theory of mathematical

programming which enables one to find an optimal marketing mix when
one is not sure of the objective to achieve.

We believe that the present state of the art in decision theory and
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game theory is such that the marketing manager will find little use for
these theories in their planning work. Lacking an easily applicable the-

ory, the manager may resort to the simplest approach, in which he/she
forecasts the most likely pattern (or scenario) of the future environment

and the competitors’ actions, and designs a single marketing program
to meet this pattern. This approach, however, is not a very logical one,

especially when the likelihood that the chosen scenario occurs is small.1

It is far more practical for the manager to create several likely scenarios

of the future environment and competitors’ actions, initially choose one
program that corresponds to the most likely scenario, and keep the oth-

ers as contingency plans. If the initially-chosen plan turns out to be the
wrong one in view of the subsequent developments, one may easily move
to another plan which fits the new situation best.

This contingency-planning approach appears to us to be the most

practical solution to marketing planning under environmental and com-
petitive uncertainties. But if the marketing manager wishes to take

this planning approach he/she will need a planning tool which permits
him/her to design many marketing programs, each of which corresponds

to a likely scenario. Even with only a few brands and several market-
ing variables, the computation of the optimal marketing mix could be a

formidable task. The manager must first collect the data on past mar-
ket shares and marketing variables, calibrate the model, and forecast

the effects of environmental and competitive factors. He/she must then
compute, for each likely scenario, the value of profits (or some other
objective function) for each combination of marketing variables, and se-

lect that combination which maximizes the objective. Unless we supply
him/her with an efficient computational tool to perform this task, the

manager is likely to revert back to a more naive approach.

In the following sections we present an example market information
system, the main purpose of which it to facilitate market-share analy-

sis. Although our example system, which is called CASPER (Competi-
tive Analysis System for Promotional Effectiveness Research), may seem

small compared to real-world market information systems (which tend
to be immense), it attempts to integrate the data collection, model esti-
mation, interpretation, and the marketing-planning process. Real-world

systems can be designed as natural extensions of our proposed system.

1This may sound contradictory, but when the events which constitute the chosen
scenario are independent and numerous, the joint probability that all of the events
occur simultaneously may indeed be very small — even for the most likely scenario
— because it is the product of probabilities for the individual events.
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7.1 CASPER

The most practical component of a market information system is the
decision-support system. The functions of a decision-support system

must be broad enough to enable managers to:

1. learn from history (and graphic summaries of history are often far
better for learning than are tables of numbers);

2. simulate the consequences of their plans in terms of both sales and
profits, for both the manufacturers and the retailers; and

3. test selected strategies in a dynamic, competitive environment.

CASPER has been developed to illustrate the kinds of functions en-
compassed by this mandate. CASPER contains a HISTORY file with

a year’s worth of weekly data, from three grocery chains, summarizing
sales in the ground, caffeinated coffee market. These historical data

were used to calibrate the market-share and category-volume model.2

As indicated in the development of the category-volume model (see sec-
tion 5.12.2), the private-label brands (PL 1–3 and AOPL) were combined

into a single APL brand aggregate.

CASPER’s Standard Graphic Library summarizes each of the nine
brands in this category. Each brand is traced over time, and each week is

traced over brands for a comprehensive, visual record of the marketplace.
Looking at the data is an indispensable step in building the kind of
expertise needed for good decisions. CASPER also contains a menu-

driven market simulator. One inquires into the market by specifying the
competitive conditions for a particular occasion or series of occasions,

with the results being accumulated in an OCCASIONS file. CASPER
contains graphing and tabling functions to help summarize simulation

results. All basic results are in the form of spreadsheets so that one
can use the capabilities of FRAMEWORK to create a wide variety of

summary reports.3

The dynamic simulator in CASPER is structured as a game. The

GAME provides a way of putting marketing plans to the test. In the

2The market-share model used data from all seven grocery chains to estimate
parameters.

3FRAMEWORK is a product of Ashton-Tate, 20101 Hamilton Avenue, Torrance,
CA 90502-1319. While FRAMEWORK is necessary to run CASPER, any of the
resulting spreadsheets can be imported to other spreadsheet programs for further
analysis.
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GAME module three Brand Teams (for Folgers, Regular Maxwell House,
and Chock Full O’Nuts) develop promotion plans and support material

to try to convince three Retailer Teams to promote their brands during
an eight- or nine-week promotion period. All six teams can compete

for profits or the roles of the Retailer Teams can be played by a Game
Master. In either case the teams receive results back in the form of

three spreadsheets. First is a summary of sales and estimated profits
achieved by the real brands and retailers during this period under the

profit assumptions of the GAME. Second, each Brand Team receives a
summary of how they would have fared against the real brands’ actions.

And finally all teams receive a summary of the sales and profits in head-
to-head competition. By triangulation, each team gets a comprehensive
summary of its performance. The complete GAME involves three pro-

motion periods of nine, nine, and eight weeks, respectively. These 26
weeks of data were the ones following the 52 weeks used to calibrate the

market-share and category-volume models.

The simulator in CASPER is driven by a high-parameter asymmet-
ric market-share model,4 which incorporates the basic premise that mar-

keting actions must be distinctive to be effective, and by a 31 param-
eter, category-volume model.5 This version of CASPER is a brand-

management tool for the coffee market, as well as a prototype for the
kind of functionality managers should expect in any market covered by

optical-scanner data.

7.2 Using HISTORY

CASPER’s Standard Graphic Library contains plots which provide an

initial summary of the history of all brands. The summary of a brands
market share or sales over time is found in Plot Settings.View.Standard
Libraries.XY-Plots. If one uses this menu to bring Folgers Sales – Chain 1

to the screen, the result should look like Figure 7.1. The top line reflects
the price each week with values recorded on the right-hand vertical axis

(from $2.64). The bottom line reflects market shares, with values demar-
cated on the left-hand vertical axis. Weeks with a feature (F), display

(D), and/or store coupon (C) are noted just above the “Week” axis at
the bottom. Note the large spikes in share or sales (up to 5,238 lbs. in

week 49) which occur in weeks with price cuts combined with feature

4The parameter values are listed in Table 5.13.
5The parameters for the category-volume model are given in Table 5.14.
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(F), displays (D), and/or store coupons (C). The dramatic pulsing of
sales during promotions is something which would be lost in yearly ag-

gregated sales graphs. By looking at a chain-week record one obtains
a much clearer sense of market response and the promotion policy of a

grocery chain.6

To see the array of competition a brand faces in any given week

use CASPER’s Standard Pie Charts. Use Plot Settings.View.Standard
Libraries.Pie Charts to look at Chain 2 weeks 10, 13, and 30. These

should look like Figures 7.2 – 7.4. Note that at $1.87 per pound (with a
newspaper feature and an in-store display) Chock Full O’Nuts acquires

72% of the market in week 10. In week 13 (Figure 7.3) the same offering
for Chock Full O’Nuts results in a 44% share. Is there anything in
the competitive environment which explains the difference in market

response to Chock Full O’Nuts? Obviously the promotion for Maxwell
House (low price combined with a newspaper feature, in-store display,

and store coupon) has an impact. As was emphasized in prior discussions
of the distinctiveness of marketing activities, whatever the value of a

particular feature, it is shared by all the brands possessing the feature.
In week 30 the shared feature is only the distinctively low prices for

Maxwell House and Chock Full O’Nuts, since there is no overlap in the
other promotional instruments.

Before beginning to exercise the market simulator, it is natural to
want to know how good the simulator is at reproducing history.7 For
example, we can view Maxwell House Market Share – Chain 2 from

the Standard Graphic Library. It should look like Figure 7.5. Then
select file Ch2Maxms from directory \CASPER\CASOCCS\CH2SIM for

comparison. It should look like Figure 7.6. The ability of these models
to reflect the consequences of competitive actions on a brand’s market

share make these forecasts valuable as planning aids. Even if univariate
time-series were more accurate (which does not appear to be the case),

6View the market share or sales figures for Chains 2 and 3. Do grocery chains
seem to differ in how frequently they promote Folgers or how they use the marketing
instruments? Chain 2 seems more willing to sustain a promotion over several weeks.
Chain 3 seems to promote less frequently, using few, if any, store coupons or displays.

7Up to 52 weeks worth of historical data can be run through the market simu-
lator at a time using the Run.Run Off History menu in CASPER. This was done a
grocery chain at a time. The spreadsheets summarizing these simulations are called
CH1SIM, CH2SIM, and CH3SIM, respectively. How to build CASPER’s Standard
Graphs from these spreadsheets is described below. For now we need only note that
any CASPER graphics made by the user can be viewed in CASPER by selecting Plot
Settings.View.User Libraries and specifying the complete file name.
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Figure 7.1: Folgers Market Share – Chain 1
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Figure 7.2: Market Shares – Week 10 Chain 2
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Figure 7.3: Market Shares – Week 13 Chain 2
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Figure 7.4: Market Shares – Week 30 Chain 2



7.2. USING HISTORY 229

Figure 7.5: Maxwell House Actual Market Shares – Chain 2
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Figure 7.6: Maxwell House Estimated Market Shares – Chain 2
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such models do not answer the what-if questions which form the core of
any planning exercise.

7.3 Simulating Static Occasions

This section presents a planning exercise assessing market response to a
sale for Chock Full O’Nuts. This will be a static simulation in the sense

that we first want to reflect market response as if nothing preceded each
occasion and nothing followed it. The occasions will be demarcated by
price varying from a little lower than is reasonable ($1.60) to a little

higher than is reasonable ($2.80). The sale will be supported by a news-
paper feature.8 The market response will be assessed first against the

standard shelf prices for all other brands, then against a sale for Fol-
gers, then Maxwell House, and finally against a simultaneous sale for

Folgers and Maxwell House. We will set the background conditions, set
the ranges of price for the simulations, and plot the results.

The defaults are the background conditions which don’t change in
the course of a simulation (a block of occasions). If we are going to vary

Chock Full O’Nuts’ price it will be set in the next section. Here we are
concerned only with setting Feature, Display, and Coupon – the things

which will be fixed while prices vary.
First let’s look at the existing defaults. We view them in the same

pop-up spreadsheet which can alter the defaults. Select the menu options
Set Defaults.Set Values.Marketing Instruments.Set.Set Manually/View. A
display like Table 7.1 should appear.

When CASPER is started, these default background assumptions are
made. They simply reflect the average shelf prices for all brands in the

HISTORY file. For easy modification, input to this sheet is keystroke
filtered so that only sensible values can be entered. Prices must be pos-

itive numbers. Promotions are reflected as the proportion (between 0
and 1) of all category volume sold on that kind of a promotion. By

using the extremes of 0 and 1, we can simulate what occurs in a single
store. By using proportions we can reflect the results for less than a

full week of promotion or results aggregated over stores with somewhat
differing promotional environments.9 Entering “1” for CFON Feature,

8The own-display and own-coupon parameters for Chock Full O’Nuts are not sig-
nificant, and are therefore not used in this simulation.

9All changes to the defaults are highlighted in bold-faced type. Any unacceptable
characters produce a beep and are not entered. Once any modifications are made,
you exit this spreadsheet by pressing the <ESCAPE> key.
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Table 7.1: Default Price and Promotion Table
Brand Price Feature Display Coupon

Folgers $2.59 .00 .00 .00
MaxHouse $2.31 .00 .00 .00

MasterBlend $2.88 .00 .00 .00
Hills Brs. $2.39 .00 .00 .00

Chock Full $2.29 .00 .00 .00
Yuban $3.29 .00 .00 .00

C&S $2.39 .00 .00 .00

AOB $2.45 .00 .00 .00
APL $2.18 .00 .00 .00

<RETURN>, and then <ESCAPE> will set the background conditions
for the first block of simulations.10

The background cost and profit-margin assumptions can be reviewed

and modified in another pop-up spreadsheet obtained by choosing Set
Defaults.Set Values.Profit.Set Costs Manually/View. The default values in

this spreadsheet are summarized in Table 7.2.

Table 7.2: Default Costs
Brand Cost per lb. Cost per Store

Brand Retailers’ Manufctr’s Feature Display Coupon

Folgers $1.98 $1.39 $75.00 $35.00 $20.00
MaxHouse $1.89 $1.32 $75.00 $35.00 $20.00

MasterBlend $2.07 $1.45 $75.00 $35.00 $20.00
Hills Brs. $1.68 $1.18 $75.00 $35.00 $20.00

Chock Full $1.70 $1.19 $75.00 $35.00 $20.00

Yuban $2.69 $1.88 $75.00 $35.00 $20.00
C&S $1.81 $1.27 $75.00 $35.00 $20.00

AOB $1.98 $1.39 $75.00 $35.00 $20.00
APL $1.53 $1.07 $50.00 $25.00 $15.00

These are only our crude estimates and we are not particularly well

10The original default values can be restored under Set Defaults.Set Values.Marketing
Instruments.Reset CASPER Default Values.All.
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informed on the specifics of costs in this market. Firms actually involved
in this industry would have access to or interest in developing more

accurate estimates of costs for all competitors. There are two points to
be emphasized. First, in any simulation these cost assumptions should be

made explicitly, not implicitly. Second, a decision-support system should
allow one to change these assumptions as better information becomes

available. Even in the absence of better data on costs, being able to vary
cost assumptions allows one to see how sensitive the final profit results

are to the initial cost assumptions.
Note that the cost structure is divided to reflect different roles of

agents in the channels of distribution. The grocery stores are character-
ized as paying a cost per week for newspaper features, in-store displays,
or store coupons. The Store Profits associated with each brand’s simu-

lated results are therefore a brand’s estimated gross revenues (lbs. sold
× retail price per pound) minus the wholesale costs (lbs. sold × retailers

cost per pound) minus the fixed cost associated with features, displays
and store coupons. The Brand Profits associated with each simulation

come from the difference between the retailers’ and manufacturers’ cost
per pound × the number of pounds sold. These are obviously elemen-

tary computations. The point is that a decision-support system should
be able to reflect the profit implications of a brand’s plans for the firms

and for the channels of distribution. Planning which does not investigate
channel profits is unreasonably myopic.

The means a manufacturer has of encouraging stores to promote a

brand are in the form of per-pound discounts for features, displays, or
coupons. The default assumptions in the CASPER simulator is that

a $.05 discount per pound is offered for each promotional element, for
each brand. Many different forms of incentives could be employed. But

they can be represented on a per-pound basis without loss of generality.
While stores are free to promote a brand without these incentives, the

assumption here is that a brand offers a per-pound price without support
(this is the price reflected in Table 7.2 as Retailers’ Cost per lb.), and

that the offered discounts per pound shown in Table 7.3 are only received
by the retailer if they perform on that particular kind of promotion. A
firm which didn’t wish to use in-store displays, for example, would simply

offer a zero discount per lb. for displays.11

The Run menu controls simulations. Since we are going to vary

11After reviewing or altering the default settings enter <ESCAPE> and the menu
at the bottom of the desktop will return. Use the <END> and <RETURN> keys
repeatedly to navigate out of the Set Defaults submenus.
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Table 7.3: Default Discounts Offered to Retailer by Manufacturer

Per-Pound Discount for

Brand Feature Display Coupon

Folgers $.05 $.05 $.05
MaxHouse $.05 $.05 $.05

MasterBlend $.05 $.05 $.05
Hills Brs. $.05 $.05 $.05

Chock Full $.05 $.05 $.05
Yuban $.05 $.05 $.05

C&S $.05 $.05 $.05
AOB $.05 $.05 $.05

APL $.05 $.05 $.05

CFON’s price, we can Choose Brands.CFON to toggle select Chock Full
O’Nuts as the brand on which this simulation focuses.12 The Variables

menu is used for specifying the marketing instruments to vary during
the simulation. Selecting Price.Set Minimum and typing 1.6 <RETURN>

will set the minimum price to $1.60 per pound. Selecting Set Maximum
and typing 2.8 <RETURN> will set the maximum price to $2.80 per

pound. The number of steps between $1.60 and $2.80 can be set at any
interval, but this simulation uses the default increment of $.10.13 Se-

lecting Run.Go will begin the first block of occasions.14 We return to
the Set Defaults.Set Values.Marketing Instruments.Set.Set Manually/View
three times. First we set as background for the CFON simulation, a sale

for Folgers using newspaper features and in-store displays to announce a

12An “X” will appear next to CFON on the desktop. Since we will be going back
and forth between the Set Defaults and the Run menus we can lock this toggle switch
“on” by using the Brand Lock option. Use the <END> and <RETURN> keys to move
to the next higher level of the menu.

13Select the Default increment [.10]. Use the <END> and <RETURN> keys to move
to the next higher level of the menu.

14The occasions will be appended to the current Occasions file on the desktop. If
there are no Occasion files on the desktop CASPER will bring up a template which
will simply be labeled Occasions. After the first block is completed use the File Man-
agement.Rename.Occasions menus to change the name of this file to something more
mnemonically meaningful. The first three characters of this file name will be used as
part of the identification of all plots generated by CASPER off the file, so that a name
like C7Sim might be helpful in remembering that these are the simulations developed
in Chapter 7 (up to eight characters may be used).
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$2.05 (average sale price for Folgers in the HISTORY file), then return to
the Run.Run Settings to reset the price ranges for CFON. Second, we reset

Folgers to its default values, set a sale for Regular Maxwell House using
newspaper features, in-store displays and store coupons to announce a

sale price of $2.10 (average sale price for Regular Maxwell House in the
HISTORY file), and return to the Run menu to reset the price ranges

for CFON. For the last block of occasions we leave the Maxwell House
sale in place and add back the Folgers sale values to the default settings.

This simulates simultaneous sales for the three leading brands in this
market.

We plot simulation results using the Plot Settings.Build.Using Occa-
sions.Standard X-Y Plots menu. Selecting CFON will cause a pop-up menu
to appear listing the following options:

Market Share

Sales
Brand Profit

Store Profit
Total Profit

Done .

Consider first the market-share plot (should be the same as Fig-

ure 7.7). The saw-tooth pattern at the top portrays the four blocks
of simulations, each with its linear increase in price, in $.10 increments

from $1.60 to $2.80. The downward-sloping market-share curves in each
block seem to have very similar shapes – differing mainly in the maxi-

mum value in each block. In each block we can see how the market-share
model deals sensibly with extreme values. A linear market-share model

might well predict a negative market share for CFON at the higher prices
in this simulation, but the MCI formulation shows that market shares
have a natural asymptote. With all other brands at shelf price, CFON’s

market-share response is strongest in the first block. Facing a Folgers
sale in the second block dramatically reduces the market-share potential

of CFON. Facing a sale for Regular Maxwell House in the third block
seems to be less damaging to CFON’s market-share position. This may

be partly due to the differences in brand-specific effects between Fol-
gers and Regular Maxwell House, but the $.05 difference in average sale

prices for these brands also contributes. Against sales for both Folgers
and Regular Maxwell House, CFON’s market share performs very like it

does facing only a sale for Folgers.
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Figure 7.7: CFON’s Market Shares – Simulation Results
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While the market-share model helps us understand how competi-
tive conditions affect how the total pie is shared among the brands, the

category-volume model helps us forecast how large the pie is. Table 5.14
reveals that lowering prices for these three brands has the most expansive

effect on total category volume. Figure 7.8 plots the total sales volume
associated with this simulation.15 Note that in the first block of occa-

sions the variation in CFON’s price leads to about 1,000 lbs.’ difference
in total category volume. With all three major brands on sale, the price

variation leads to around three times as much variation in total category
sales. What is showing here is that sales for more than one major brand

bring a lot of coffee shoppers into the stores. That around 50% of all
sales in the category are made on some kind of a trade deal indicates
that many shoppers have been trained to look for coffee deals. That

the coffee category is purchased by over 90% of household makes coffee
a prime category for promotions aimed at bringing shoppers into the

stores.16 Some undoubtedly come in for a particular brand, while others
may well switch brands in the store due to differences in prices, displays,

and/or store coupons.
Figure 7.9 shows what these promotions imply for the sales of Chock

Full O’Nuts. Even though market share declines for CFON over the
four blocks in the simulation, sales increase as the total category volume

expands. Some shoppers may be drawn in by the features for Folgers or
Regular Maxwell House and switch based on price comparisons at the
coffee display.

Whenever there is a constant promotional environment the brand
profits will be a constant proportion of sales, so that the sales and brand-

profit functions will have identical shapes. If plotted, profits for the
brand would always be maximized at the lowest price in each block.

This is quite different from the plot of profits for the store (should look
like Figure 7.10). Note that $2.00 seems to be the price that maximizes

CFON’s contribution to store profits in each block. The sum of brand
profits and the brand’s contribution to store profits is plotted as Total

Profits in Figure 7.11. The function is similar in shape to brand profits,
except that the fixed cost of the features, displays, and coupons cut into
profits at the lowest price levels since margins at that point are smallest.

The higher level of total profits associated with sales for all three

15This plot is formed by selecting Plot Settings.Build.Standard X-Y Plots.TCV. The
prices on the right-hand vertical axis are a volume-weighted average over brands.

16Both statistics are from The Marketing Fact Book , Chicago: Information Re-
sources Inc., 1983.
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Figure 7.8: Total Category Volume – Simulation Results
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Figure 7.9: CFON’s Sales – Simulation Results
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Figure 7.10: CFON’s Contribution to Store Profits – Simulation Results
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Figure 7.11: Total CFON Profits – Simulation Results
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brands stems from the fact that these three brands can expand total cat-
egory volume when they are on sale. Competition is normally less fierce

among brands which can expand markets, but the market expansion we
see here is only for a week. People will switch brands, buy earlier, or

increase their inventory of coffee when dramatic sales occur, but the ev-
idence is that in the longer term, they don’t drink a lot more coffee just

because of price promotions. Look at the TCV plot in CASPER’s Stan-
dard Graphic Library for support of this claim. Because brand managers

need to plan promotions over longer periods, it is important that they
are not deluded into believing this level of sales can be sustained week

after week. The competitive game incorporates the type of constraints
which can only be manifest over time. Before turning to the game, how-
ever, we will first look at the simulation results from the perspective of

the Folgers and Regular Maxwell House.

In this simulation Folgers’ market share always increases as CFON’s

price increases (see Figure 7.12). Comparing the second and fourth
blocks in the simulation, it appears that Folgers market share is hurt

much more by the joint competition from CFON and Regular Maxwell
House than it is by a promotion for CFON alone. Even facing CFON
at an unreasonably low price, a promotion for Folgers at $2.05 per lb.

using newspaper features and in-store displays is still expected to draw
over 40% of the sales. The sales for Folgers in this simulation are shown

in Figure 7.13. Note that the maximum occurs in the second block when
Folgers is on promotion and CFON is at $2.30 (as close as possible to

the average shelf price of $2.29). Brand profits for Folgers in this simula-
tion would be shaped very similarly to the plot in Figure 7.13. Only the

decreased margin of $.10 per lb. supporting the retailers’ feature and
display cost keeps the plots from being exactly proportional. Folgers’

contribution to store profits are plotted in Figure 7.14. These are maxi-
mized when Folgers’ sales are maximized. When Regular Maxwell House
is being promoted, the store’s profit contribution from Folgers declines.

From the perspective of Regular Maxwell House the results should
look like Figures 7.15 – 7.17. Note that market share for Maxwell House

first rises as CFON raises its price, and then Maxwell House’s share
either flattens out or actually drops (when Folgers undercuts it in price).

Maxwell House seems to respond differently to being distinctively low
priced than does Folgers. The brand and store profit for Maxwell House

are maximized in each block when CFON is far below the maximum
price in these simulations.

Market asymmetries are being reflected here. Only recently have
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Figure 7.12: Folgers’ Market Shares – Simulation Results
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Figure 7.13: Folgers’ Sales – Simulation Results
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Figure 7.14: Folgers’s Contribution to Store Profits – Simulation Results
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Figure 7.15: Maxwell House’s Market Shares – Simulation Results
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Figure 7.16: Maxwell House’s Sales – Simulation Results
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Figure 7.17: Maxwell House’s Contribution to Store Profits – Simulation

Results
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market-response models become available which can capture the diver-
sity of asymmetric competition and yet are practical for use. Only re-

cently have the records of retail transactions become available which al-
low us to see so clearly what drives consumer purchases. The coincidence

of these events has created a new opportunity for brand management to
develop plans based on comprehensive data and systematic inquiry. But

plans are based on assumptions as well as on data. The propriety of such
assumptions is the topic of the next section.

7.4 The Assumptions Underlying Planning

It was emphasized earlier that looking at the data is an indispensable

part of building the expertise necessary for good decision making. One
of the reasons is that looking makes it easier to evaluate the propriety of

assumptions.

The marketing literature on optimal pricing, for example, seeks the

single price that maximizes profits under certain assumptions concern-
ing competition.17 A look at the data and one sees that there are two

price distributions: one corresponding to shelf prices and another corre-
sponding to sale prices. The pulsing back and forth between these two

distributions seems far too systematic a pulsing between sale prices and
shelf prices to be a search for a single, optimal price. Some chains obvi-
ously have the policy of promoting a brand for only one week at a time.

If a brand is on promotion this week in such a chain, we are very sure it
will not be promoted the next.

As we aggregate store-week data, either over stores or over weeks, we
know that our ability to see the underlying process diminishes. But it

is just such aggregation that makes the assumptions underlying optimal
marketing-mix models appear more tenable. Game-theory models are

process models, which is why many of the equilibria can be sought nu-
merically by simply running the game. If the process descriptions only

seem apt for overaggregated results, then better models are needed.

There needs to be further development of game-theory scenarios tai-

lored to fit what we see in these data. One interesting possibility com-
bines a “Colonel Blotto” game with MacQueen’s18 development of N-

17cf. Bass & Bultez [1982], Kalish [1983], Ram & Bass [1985].
18MacQueen, James [1988], “Systems of N-Person Time-Variable Games,” A talk

presented to the Jacob Marschak Interdisciplinary Colloquium On Mathematics in
the Behavioral Sciences, Western Management Science Institute, UCLA, January 15.



250 CHAPTER 7. DECISION-SUPPORT SYSTEMS

person time-variable games. The Colonel Blotto game is due to Tukey,19

but it was introduced to us by Steckel20 in his discussion of resource

allocation based on attraction models. Steckel’s simulation results are
based on seven assumptions:21

1. Only one resource is to be considered.

2. The amount of the resource a firm has to allocate is constant.

3. The firm has a fixed price and contribution margin for each unit
of product it sells.

4. The maximum potential margin or profit obtainable from a given
outlet is constant. No amount of resource, no matter how large,

can increase primary demand.

5. The responses of each outlet are independent of each other.

6. The planning horizon is one period, with no lagged effects.

7. A firm about to make an allocation decision either knows its com-

petitor’s allocation or can anticipate it accurately.

If we think of the planning horizon as a year then these assumptions
provide a well-thought-out set of assumptions. The most controversial

assumptions would be items 4 and 7. But at the yearly level we would
not expect to see wide swings in primary demand that we see in the

weekly data. It is even reasonable to assume that firms can make good
guesses of competitors’ total promotional expenditures; we simply would

not be able to anticipate when or where the resources would be spent.
The biggest problem is that if we calibrate an attraction model to

correspond to this planning horizon, we would aggregate away all the in-

teresting behavior. The final allocation model could tell us nothing about
when or where to allocate resources. We need to decouple the planning

horizon from the periodicity of the market-share model. The Colonel
Blotto game helps here by proposing a scenario in which “two players

contending on independent battlefields must distribute their entire forces
to the battlefields before knowing the opposing deployment. The payoff

to each player on the ith battlefield is a function of the opposing forces

19Tukey, John W. [1949], “A Problem in Strategy,” Econometrica, 17, 73.
20Steckel, Joel H. [1987], “On Using Attraction Models to Allocate Resources in a

Competitive Environment,” Columbia University Working Paper, August 23.
21Steckel [1987], p.3.
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committed to that battlefield.”22 If the battlefields are thought of as re-
gions, the independence between them is probably not a problem. But if

battlefields are weeks , then independence is less tenable. The important
feature of the Colonel Blotto game is in the relaxation of item 7. Even if

competitors’ overall resources can be estimated, their deployment is not
known. This game also makes it easier to think of a planning period as

a collection of subgames, with an attraction model corresponding to the
less aggregate subgames.

MacQueen’s game enables a generalization to n persons (m brands in
our case) from the two-person case, specifically acknowledges the time-

varying aspect of subgames. Casting MacQueen’s scenario into our con-
text, we have m brands each of which follows a circuit with numerous

nodes. The nodes in our case could be regions or time periods, but are
probably best though of as promotional conditions (e.g., shelf prices, sale

prices, features). Some of the nodes are common points on different cir-
cuits. When two brands jointly occupy the same node they play a game,
which can be of different durations and payoffs.23

While generalizations along these lines hold promise, we are a long

way from being able to calibrate a model and then just push an opti-
mality button and receive back the best decisions to make. The lure

of push-button management is very strong. We encounter it not only in
game theory but also in the development of expert systems .

The essential notion of expert systems is that if we could only cap-
ture the knowledge of the experts in computer programs, then all we

would have to do is to describe our particular context and the program
would tell us what to do. There are three basic ingredients. We need
the experts, the knowledge engineers to translate expert knowledge into

conditioned-act statements, and we need the computer program to act
as repository of the knowledge and as the decision-support system to

prompt users through the sequence of questions needed to access the
stored expertise.

The expert-systems programs (shells) exist although they will not

22Steckel [1987], p. 17.
23MacQueen’s study of circuit processes and induced fields has helped him derive

the stationary distributions representing the expected time a Markov process is in
each particular state (node). His efforts make it mathematically easier to characterize
the equilibrium solutions to these processes. Interested readers should see MacQueen,
James [1979], “I. Circuit Processes. II. Notes on Markov Particle Systems with Ex-
clusion and Induced Fields,” Western Management Science Institute, Working Paper
No. 294, University of California, Los Angeles, CA 90024-1481.
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be reviewed here. Marketing academicians with interest in behavioral
decision theory are developing the needed experience with knowledge

engineering in areas such as advertising decision making. But analytical
methods for representing market response based on scanner data are

so new that we don’t yet see the experts. The management expertise of
tomorrow is built from the structured inquiry of today. The development

of CASPER as a FRAMEWORK application is designed to provide an
open environment in which expert systems can be developed by the real

experts – the managers themselves. Getting from here to there requires
that we ask the basic question . . .

7.5 What If There Were No Experts?

What experts know is not innate. It must have been learned. So the
task is to structure our inquiry into a market so that we learn. We have

looked at history and done one planning exercise in earlier sections of
this chapter. But much more effort is needed to understand this market.
We could perform this same kind of planning exercise varying Folgers’

price or Maxwell House’s price. Beyond these basic exercises there are
still a huge number of simulations which could be run.

We can look at the competitive maps developed in Chapter 6 for
guidance in pruning possibly unfruitful branches of inquiry, and provide
more focus to our efforts. From looking at the structure over stores and

weeks (Figures 6.3 and 6.4) we already know that the major structural
changes in price elasticities coincide with shelf-price and promotions for

the three major brands: Folgers, Maxwell House, and Chock Full O’Nuts.

Going back to the map of shelf-price competition in Figure 6.5, we

can consider what simulations might help determine a robust shelf price
or distribution of shelf prices. For Folgers or Maxwell House simulations
should include a look at the AOB category, since the AOB brands are

aligned to be most vulnerable to Folgers and Maxwell House. Folgers
should look at the influence CFON’s and Master Blend’s shelf prices on

Folgers’ shelf price, since Folgers is vulnerable to moves by these brands.
Regular Maxwell House should look at the influence of its flanker Master

Blend, since Master Blend is aligned competitively at shelf prices.

When investigating Folgers’ sale price, the map in Figure 6.6 can help
reduce the simulations. Folgers is vulnerable to CFON, but also Hills

Bros. and Master Blend are well aligned, although they do not appear to
have much clout. Simulations could tell if this alignment translates into
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a substantial threat. Folgers should also look at its influence on CFON
and AOB, for although these brands are somewhat distant, they appear

to be quite vulnerable. Simulation to help determine Maxwell House’s
sale price should include how the AOB category is affected, as well as

how vulnerable Maxwell House is to Chase & Sanborne and Master Blend
(see Figure 6.7). Chock Full O’Nuts (Figure 6.8) on sale is aligned to

attack Folgers, Hills Bros., and Maxwell House (although these brands
seem to differ greatly in their vulnerability) and, to a lesser extent, it is

aligned to attack PL 2 and Master Blend. On the other hand it seems
vulnerable to counterattack from Chase & Sanborne and Folgers.

Three things should be remembered. First, the maps from Chapter 6

relate only to prices. While prices are the major instrument in this
market, maps for other marketing instruments might help complete the

picture. Second, note that the idealized competitive conditions reflected
mostly stores in grocery chain 1. The private-label brands might have

a more active role in maps corresponding to other chains. And third,
the maps are based on market-share elasticities. The brands which are
able to expand the category volume in any given week have a somewhat

different set of concerns than those who can only compete in a zero-sum
fashion.

The simulation exercise showed that a simultaneous sale for the three
biggest and most market-expansive brands are estimated to generate over

8,000 lbs. of coffee in a single week. Even if this were an accurate esti-
mate, no one would expect the same market conditions in the following
week to produce the same results. The dynamic effects have to be con-

sidered in planning promotions.

7.6 Dynamic Simulations

There is a difference between demand and consumption. All consumers

adopt some inventory policy, at least implicitly. If we stimulate primary
demand through promotions, we may be filling up the larder, without

any influence on consumption. If this is the case, we can expect further
stimulation to become less and less effective as inventories build up in

the households. While many aspects of consumer behavior in such cir-
cumstances have been the basis of rational speculation in economics, we

now have the data to answer some basic questions.

Since the release of IRI’s Academic Database on the coffee market in
1983, the academic marketing-science community has learned a lot about
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the behavior of consumer panels.24 One statistic we now have available
is the average interpurchase time which is 52.5 days in this category.25

If we wish to know how much we can expect to expand consumption
we aggregate sales over some multiple of the average interpurchase time.

Since we also know the variance, we could use two standard deviations
above the average interpurchase interval as the range.

If we know this range, but have only the store-level data for further

analysis, we could plot a centered moving average of sales for this range
of weeks. If the plot is relatively flat, we have no evidence of increased

consumption.26 If there are variations we could relate them to similarly
aggregated variations in the promotional conditions.

If we have the panel data for analysis we could do much more.
Gupta27 developed models for assessing when, what, and how much to

buy, using the IRI coffee database. He postulates that consumers first
decide when to buy, and then decide what and how much. This modeling

framework enables Gupta to develop an overall sales elasticity which can
be decomposed into the proportion of sales associated with forward buy-

ing, the proportion associated with brand switching, and the proportion
associated with stockpiling. He found that “84% of the sales increase

due to promotion comes from brand switching (a very small proportion
of which may be switching between different sizes of the same brand).

Purchase acceleration in time accounts for less than 14% of the sales in-
crease, whereas stockpiling due to promotion is a negligible phenomenon
accounting for less than 2% of the sales increase.” These models are

based on the characterization of the coffee category as being a mature
product class, with constant long-term consumption rates. But since

variations due to brand switching are independent of consumption rates,
we can use these results to put an upper limit of 16% on the combined

effects of forward buying, stockpiling, and increased consumption.28 The

24The Academic Database reported on 78,000 transactions in the coffee market by
1,000 households in each of two small cities, Marion, Indiana, and Pittsfield, Mas-
sachusetts. The data used in Chapter 5 to develop the market-share and category-
volume models are store-level data from about the same time periods, not these
consumer-panel data.

25The Marketing Fact Book , Chicago: Information Resources, Inc., 1983.
26This plot could reveal seasonal variations in consumption, even if there are no

variations resulting from efforts to stimulate demand.
27Gupta, Sunil [1988], “Impact of Sales Promotion on When, What, and How Much

to Buy,” Journal of Marketing Research , forthcoming.
28We could also reasonably assume that forward buying is far more substantial an

influence than is stockpiling.
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brand-switching component agrees closely with the estimates of McAlis-
ter and Totten.29

These percents are useful in putting constraints on a dynamic sim-
ulator. CASPER’s dynamic simulator has three promotion periods of

nine, nine, and eight weeks, respectively, using data from the 26 weeks
reserved for cross validation of the market-share model. The total sales
of all brands in any promotion period can expand by no more than 16%

above the actual sales in the corresponding period. The percentage can
be adjusted to reflect that 16% expansion is not expected to occur each

and every period.

CASPER’s dynamic simulator is structured as a game. To add a note

of realism, Brand Teams develop promotional offers which are presented
to the Store Teams or a Game Master. Results from the static simulator
can be used to entice stores to accept a brand’s promotional offer. While

each brand must present the same plan to each store, the stores must
act independently on the offers.

Using historic data in a dynamic simulator has some obvious advan-
tages. Applying the cost assumptions to the historic data provides a
profit baseline for the stores and the brands. This is a particularly valu-

able baseline if the stores are run by independent teams, rather than by a
Game Master. If only the brands are managed by independent teams, the

Game Master can rely on actual market decisions to fill in the unknown
conditions. In addition to the pure baseline results, it is straightforward

to evaluate one brand’s plan against the background data, or to evaluate
the brands in head-to-head competition.

One basic cycle of inquiry involves:

1. looking at the historical data,

2. evaluating how well a market-response model simulates history,

3. performing basic simulation exercises,

4. consulting the competitive maps,

5. performing simulations indicated in the maps,

6. proposing a plan,

29McAlister, Leigh & John Totten [1985], “Decomposing the Promotional Bump:
Switching, Stockpiling, and Consumption Increase,” Talk presented to the Atlanta
ORSA/TIMS Conference, November.
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7. simulating how well the plan is received by the stores as well as
the ultimate market response, and

8. comparing the brand’s performance against appropriate baselines.

The full cycle should precede the first promotion period. Cycles for later
promotion periods could begin by trying to reconcile results with the

competitive maps in item 4.

This seems to be a lot of effort, but if the information potential of

scanner databases is to be tapped, this is the kind of effort which needs
to be undertaken.

7.7 Management Decision Making

Those of us involved with management research and education face the
dual problems of developing relevant management tools and preparing

current and future managers to use them. There are obvious tensions in-
volved. If brand managers were captivated by the complexities of choice
models or market-share models, they might well have chosen to pur-

sue academic careers. Those of us involved in methods development are
rarely intrigued by the pragmatics of brand management. So where do

we meet?

The design of market information systems may be as close as we

can get to a common ground. This is the arena in which management
science can help provide a systematic basis for utilizing data and market-

response models, while management practice can use these efforts in
decision making.

The emphasis on real data and real brands makes CASPER a proto-
type decision-support component of a market information system which

could be transported to any of the hundreds of categories for which such
data are available. While the development effort needed to implement

CASPER-style interface in another product area is far from minor, the
end result has some obvious benefits. First, brand managers spend their
time learning about market response in their own product area. Second,

they must make explicit the assumptions about the competition which
are too often hidden or implicit in forecasts or simulations. Third, they

are forced to consider the revenue and cost implications of their plans,
for the firm and for the channels of distribution.

The most obvious benefit for the academicians is that their talents at
research and methods development can be used to advance management
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theory and practice without being judged for how much they know (or
don’t know) about selling coffee. æ
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Chapter 8

A Research Agenda

A number of research issues have come up in the writing of this book

which will be recapitulated here. The basic topics include problems
arising in estimation, decision support, integration of panel data, and

trans-category research.

8.1 Estimation Problems

There are three issues here which should be high on a research agenda:

methods for dealing with missing data, the issue of constrained param-
eter estimation, and the understanding of long-run effects.

8.1.1 Missing Data

For a category-volume model, different patterns of distribution can lead
to a lot of missing data. The approach taken in Chapter 5 was simply

to create brand-absence variables which have a zero whenever the brand
is present and a one whenever it is absent. The log(price) variable cor-

responding to the missing brand is given a value of zero whenever the
brand-absence coefficient has a value of one. This is a practical rem-

edy for the missing explanatory variables in the category-volume model.
The issue which needs to be addressed concerns how much influence these
missing values have on the parameters of a category-volume model. It is

possible to derive estimates of the missing values which are specifically
designed to minimize the influence of missing explanatory variables.1 It

1See Cooper [1987b].

259
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would be very worthwhile to compare the parameters estimated by such
a scheme with those in Table 5.14.

Note that for the category-volume model the missing explanatory

variables are the problem, not missing dependent variables. If a brand
is not distributed it simply does not increment total category volume. If

exp(z-scores) or zeta-scores are used in the corresponding market-share
model, the missing explanatory variables can simply be given a value at
the mean for that occasion. Missing dependent measures in the market-

share model only affect the full cross-effects model (see section 5.7). In
the other versions of the market-share model we can drop the observation

corresponding to a missing dependent variable. In the full cross-effects
model, the ease of parameter estimation is dependent on having a com-

plete matrix of dependent variables. Practical methods along the lines
of Malhotra’s [1987] developments need to be investigated.

8.1.2 Constrained Parameter Estimation

We have the means to guarantee that the differential-effect parameters
which are expected to be positive (or expected to be negative) turn out
that way, or turn out to be zero. The residuals from the differential-

effects model may be used to identify cross-competitive effects. The
question is whether we should recombine all effects and re-estimate pa-

rameters in a best linear unbiased fashion. Alternatively we could use
a two-step procedure which would estimate the parameters of the cross

effects from the residuals of the constrained differential-effect parame-
terization.

This is a straightforward problem which simply requires thorough
study before recommendations can be made.

8.1.3 Long-Run Effects

Hanssens2 asks if marketing efforts have a permanent impact on sales;
106 tests on scanner data (instant coffees) showed the series to be sta-

tionary (non-stationarity is a necessary, though not sufficient condition
for showing a permanent component to marketing efforts). While this

means that the kinds of models developed here for the coffee market are

2Hanssens, Dominique M. [1987], “Marketing and the Long Run,” Center for Mar-
keting Studies Working Paper No. 164, Anderson Graduate School of Management,
UCLA, September.
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free of the time-series issues discussed in Chapter 3, we believe the issue
will require more study in the future.

The brand franchise or market power is summarized, in a sense, in the

brand-specific parameter αi. These parameters are used in Chapter 5 to
develop estimates of baseline market shares . Since the parameter esti-

mate is a constant it will, of course, have no correlation with variations in
marketing efforts. But it seems reasonable to ask if national advertising

affects these brand intercepts. It may be possible to address the question
if differences in these intercepts across brands have a permanent compo-

nent which can be related to differences in advertising, distribution, or
other longer-term influences across brands.

8.2 Issues in Decision Support

8.2.1 Game Theory

The basic message in the brief discussion on game theory in Chapter 7,

is that more development is needed of games which reflect the conditions
we see in the data. What we see is that manufacturers try to push their

products through the channels by offers of trade deals as well as pull the
products through by national advertising. While advertising budgets

used to exceed greatly promotion budgets, the balance has shifted in
many firms. The optimal balance between push and pull strategies is an
area of study which might well help manufacturers.

Retailers in general know that the trade-promotion offers they receive

from manufacturers are also received by other retailers. But they do not
know what offers will be accepted or when performance on those offers

will occur. While the focus of analysis here has been on a grocery chain,
the game among the retailers is at the level of a trading area (which may

be conveniently specified by the local newspapers for grocery categories).
At this level it is obvious that the onset of promotions must be random,

for if one retailer knows another is scheduled for a major promotion
there would be substantial advantage in a preemptive sale. The amount
of an advantage would, of course, be influenced by the frequency of

promotions in the category, the length of time retailers have to perform
on an offer, the length of the interpurchase period, and the household

inventory policy for the category. Developing games which reflect all
these influences will not be an easy task.
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8.2.2 Expert Systems

While we recognize the desire on the part of managers and students of

management to look for an expert – a guru to provide the answers would
greater simplify the tasks at hand – we are not very sanguine about the

possibility of finding such expertise. This is a very young field and we
are reminded of a passage from Henry Adams:3

What one knows is, in youth, of little moment; they know

enough who know how to learn.

Thus our emphasis is on how one can learn from the vast amounts

of data and the extensive development of models. Is there a way to
structure the process of inquiry into these markets? Can we develop
expert inquiry systems?

8.3 The Integration of Panel Data

The growing availability of consumer panels tied to store-level scanner

data creates the opportunity to study many complex processes.

Disentangling the effects of forward buying, stockpiling, and increased

consumption will ultimately be done using panel data. Totten and
colleagues4 have identified the consumer groups which contribute to these

effects, but more research is needed to model the interrelations among
these groups and how they are influenced by market forces.

This raises the fundamental issue of integrating panel data and store-

level data. Connecting panel measurements and the corresponding store-
level conditions to the sales results is the important step as is emphasized
in Moore and Winer [1987]. When subgroups have to be incorporated as

implied by Totten’s research, the problem becomes more complex. We
know the market conditions for each group since these conditions are

homogeneous over groups within a week. If the identifying characteristics
of the groups are assessable from the panel data, then a market-share

model can be estimated at the group level. Oh yes, there is one thing
missing. At this point we don’t have a dependent measure. We don’t

know the market shares or sales by subgroup.

3Adams, Henry [1918], The Education of Henry Adams , New York: Random
House, 1931.

4Totten, John C. & Martin P. Block [1987], Analyzing Sales Promotion: Text and

Cases , Chicago: Commerce Communications, Inc. McAlister & Totten [1985].



8.3. THE INTEGRATION OF PANEL DATA 263

If we simply aggregate the panelists’ choices by group, all the advan-
tages of the store-level data are lost. Besides, experimentation with such

an approach when IRI’s Academic Database was first released convinced
us that even with 1,000 families per city, aggregated panel-based market

shares are too sparse to allow estimation of cross effects. The real op-
portunity is in integrating the two data sources, not in using aggregated

panel data as if they were store-level data.

Using market shares computed from the panel data for each group,
deriving group-level estimates of the corresponding store-level market

shares should be a solvable problem. For example, one of the most
likely segmentations would be to minimize within group heterogeneity

in mean purchase frequency. In Chapter 2 we emphasized that forecast-
ing of brand sales and market shares would become more accurate if

market shares are forecast for each segment and weighted by the mean
purchase frequency for the segment to obtain the estimate of over-all

market shares (p. 44 above). Totten and Block [1987] showed that
the heavy-user group was the most likely to increase consumption due

to a promotion. Chapter 4 (see Table 4.1 and section 4.2) warns that
if subgroups have heterogeneous market shares, as implied by Totten’s
finding, then aggregation can diminish our ability to reflect the underly-

ing process. In this example our problem can be simplified by thinking
that heavy and light users form two mutually exclusive and exhaustive

groups. We know that a weighted sum of the group market shares must
equal the store-level market shares. Such a constraint should make the

solution more useful and may make the problem easier to solve.

The constrained estimation of subgroup market shares allows us to

calibrate asymmetric market-share models reflecting how the groups re-
spond differently to market conditions. The estimation method could
be used in the analysis of split-cable experiments. Market shares could

be estimated based on the partitions in the experimental design. The
analysis-of-covariance model from section 5.2.3 could be useful here. It

may be that elaborations on the segmentation scheme could help inte-
grate more and more of the television-viewing data now being collected

in parts of panels.

Along with segment-level characteristics and records of viewing be-
havior, survey techniques can be used for subsamples of the panels. If

the resulting interval-scale measures are transformed to zeta-scores or
exp(z-scores), these measures can be used like any other variable in the

market-share model. It is through this connection that we may assess if
brand image or perceptual positioning can affect market shares.
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With survey data connected in we can begin to ask questions about
how consumer judgments of value or importance relate to purchase be-

havior. Cooper and Finkbeiner5 propose some basic models for the inte-
gration of consumers’ judgments of importance into MCI models. This

should make a much more realistic platform for asking if statistically
estimated importance weights are superior to subjective estimation, or

if the combination of the two is better still.

8.4 Market-Basket Models

If we have data on the total transactions of each consumer, someone is

going to try to model them. Extrapolating the approach in this book
to that task, we would divide the market basket into categories, model

the total expenditures as we would a category-volume model, and model
the shares among categories as we would a market-share model. Within

each category we would have a nested pair of models for category volume
and brand shares.

This illustrates two levels of what might turn out to be a more ar-
ticulately leveled scheme. But the principles are the same. If the cate-
gory label is beverages, the subcategories might cross hot and cold with

carbonated and noncarbonated. The hot, noncarbonated subcategory
might be divided into coffee and tea, and the coffee subsubcategory is

caffeinated, ground coffee. At some point we will get to the brand level
we have illustrated in this book, and we will know the principles involved

in modeling each level of categorization and connecting the results with
their siblings and parents.

Such an analysis would provide the elasticity needed to drive shelf-
space allocation models. While such an undertaking may be unreason-

able at the present time, we believe such efforts will be more doable
as experience with these models grows and the diffusion of computing
technology continues. æ

5Cooper, Lee G. & Carl T. Finkbeiner [1984], “A Composite MCI Model for In-
tegrating Attribute and Importance Information,” in Thomas C. Kinnear (editor),
Advances in Consumer Research, Volume XI , Provo, UT: Association for Consumer
Research, 109–13.
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