

Unlocking Hidden Value: Data Science + Optimization ODSC EAST 2024

APRIL 24, 2024

Types of Analytics

FIRST ANALYTICS®

Machine Learning

- Finds patterns in data
- Makes predictions based on previous observations
- Usually involves the solution of a mathematical optimization problem
- User has to:
 - Collect necessary data
 - Decide on the structure of the model
 - Decide how to measure the quality of a model

Mathematical Optimization

- Makes optimal decisions based on a mathematical model
- Can accurately measure the quality of a solution
- Is a mathematical tool that can be used to solve many different problems
- User has to define:
 - Decision variables
 - Constraints
 - Objectives

Known:

Input <u>Data</u> Output Unknown:

Question to be answered: Which model best describes my data?

Model •

Example: Fitting a linear model to data point

- Which one is "better"?
- Why? •

Mathematical Optimization

Known:

- Possible Decisions Model
- Constraints Unknown:
- Input/Output

Ouestion to be answered: Which input yields the best possible output for a given model?

 $\sum_{i=1}^{N} (y_i - \alpha_1 x_i - \beta_1)^2 > \sum_{i=1}^{N} (y_i - \alpha_2 x_i - \beta_2)^2$

- Data points $\{(x_1, y_1), ..., (x_N, y_N)\}$
- Minimize distance between data and model

Examples

Price Optimization (quick serve restaurants and gas stations) AND USING EXCEL FOR PROTOTYPING

Elements of Menu Price Optimization

OBJECTIVE						
What you want to maximize						

Profit?

Volume?

ITEM PRICE "DECISION VARIABLES"

• Items whose prices can be changed

CUSTOMER RESPONSE MODEL

How customers respond to price changes

RULES & CONSTRAINTS Rules that should not be broken

- Price elasticity
- Typically by product and segment

Menu Inflation

- Small < Large; Combo Meal < Sum of individual items; round to nearest 9 cents, etc.
- Relationship to specific competitor items

FIRST ANALYTICS°

"Toy"-scale Prototyping using Excel Solver

								Previous						New		
				Cor	npetitor	Or	iginal	Quantity	P	revious		Opt	imized	Quantity	New Profit	
Product		Cost			Price	F	Price	Sold		Profit		F	Price	Estimate	Estimate	
Sandwich (large)	\$	2.80		\$	3.90	\$	4.00	1,700	\$	2,040		\$	3.92	1,723	1,938	
Sandwich (small)	\$	2.20		\$	2.80	\$	3.00	1,850	\$	1,480		\$	3.36	1,760	2,042	
Fries (large)	\$	0.90		\$	1.80	\$	2.00	1,300	\$	1,430		\$	1.23	1,531	506	
Fries (small)	\$	0.60		\$	1.40	\$	1.50	1,400	\$	1,260		\$	1.00	1,499	604	
Drink (large)	\$	0.60		\$	1.30	\$	1.60	2,320	\$	2,320		\$	1.56	2,332	2,239	
Drink (small)	\$	0.50		\$	1.00	\$	1.10	2,393	\$	1,436		\$	1.20	2,356	1,649	
Salad (A)	\$	1.20		\$	2.10	\$	2.10	1,901	\$	1,711		\$	2.52	1,821	2,404	
Salad (B)	\$	1.30		\$	2.20	\$	2.00	1,800	\$	1,260		\$	2.32	1,704	1,741	
Salad (C)	\$	1.00		\$	1.40	\$	1.50	1,800	\$	900		\$	1.68	1,692	1,151	
					1	\$	2.09	16,464	\$	13,837		\$	2.09	16,418	\$ 14,273	
		_			_		K		To	otal Profit			7	4	Total Profit	
Car	n't go	more	tha	n 20%	%											
01	ver co	ompetit	or	price												
					_			Aver	nae	Price helo	4					
Actual Products								cons	ige tant	in model				Erom Ela	sticity Model	c
Classics		9						cons	lant	mmouch			,	FTOITI LIU	sticity would	
Wraps		3														
Salads		8														
Side Items		7														
Breakfast items		14														
Desserts		9														
Drinks		13														
Trays		10														
		73														
Excludes combo's and sizes.																

FIRST ANALYTICS[®]

"Toy"-scale Prototyping using Excel Solver

FIRST ANALYTICS®

Business Impact of Menu Price Optimization

- Depending on the market area, the results showed an increase in sales ranging from 1.43% to 3.33%.
- Profit showed increases of **1.25**% to **2.55**%.
- These were achieved without changing the weighted price of current offerings, so as to maintain the perception of value in the mind of the consumer
- Ancillary benefits include insights that were uncovered which helped the company understand the impact that business rules have on productivity.

Fuel Price Optimization

- An operator of about 1700 gas stations needed to set fuel sales volume and profit targets at the corporate level.
- Both in pilot and in real-world evaluations of the optimization model, the system was shown to increase profits by 10%.

Excel Solver Prototyping

	Fuel Price Optimization											Original	Retail P	rice & Profit	S		
Store	State	Date	Fuel Cost	MM retail	Optimum Retail	Diff vs. MM	Vol = f(diff,)	Profit per gal	Total Profit		Min diff	Max diff	Fuel Cost	Retail	Diff vs. MM	Gal	Total Profit
105	NC	4/24/11	3.644	3.699	3.737	0.038	1,330.02	0.093	124.25		0	0.04	3.644	3.699	-	1,360.16	74.81
445	SC	4/24/11	3.499	3.579	3.579	0.000	1,554.98	0.080	124.40		0	0.04	3.499	3.589	0.01	1,525.60	137.30
							2,885.00		248.64		1	r				2,885.76	212.11
									Maximize		_	-					
											(
		Fin	d the diffe	rence vs.	MM that		2,885.00				Cons	traints		Profit in	crease		17.2%
		ma	ximizes To	otal Profit			Min Gallons	×									

Excel versus Serious Optimization

x Excel

- Accessibility: Solver is integrated into Excel, making it widely accessible and easy to use for those familiar with spreadsheet software.
- **Ease of Use**: It provides a user-friendly interface ideal for those who are not experts in programming, allowing quick setup and testing of optimization models.
- **Prototyping**: Solver is suitable for building and testing small-scale models quickly, which helps in validating concepts before implementing them on a more advanced platform.
- Educational Tool: Excellent for educational purposes and for learning the basics of optimization without the need for complex coding.

GUROBI OPTIMIZATION

- Performance: Gurobi is designed for large-scale optimization and offers superior performance and speed, which is crucial for handling complex and large data sets.
- Advanced Algorithms: It includes more sophisticated algorithms and more extensive capabilities for solving integer, linear, and non-linear problems more efficiently.
- **Scalability**: Gurobi can efficiently solve problems of much larger scale than Excel Solver, making it suitable for industrial-level applications.
- Integration Capabilities: Offers better options for integration with other software and programming languages like Python, C++, Java, etc
- Support and Updates: Provides professional support and regular updates

Drug Dispenser Cabinet Optimization

Simplist[®] ready-to-administer prefilled syringes

Simplist

No assembly required*

Simplist is a single unit dose prefilled syringe requiring no assembly at the point of care. Designed for efficient medication delivery and ease of use, Simplist helps reduce waste potential and eliminate steps where errors can occur.^{1,2}

Less preparation. Less waste. It's that simple.

Resources Se

Pharmacy Storage Optimization

FIRST ANALYTICS°

 $(\mathbf{\dot{x}})$

Simplist

Analytics for streamlining the storage of Simplist®

Optilytics° analyzes existing data from automated dispensing cabinets (ADCs) and provides a succinct road map for reorganization. Utilizing a few standard reports from your ADC, Optilytics from Fresenius Kabi can make the storage of Simplist simple, time-effective, and efficient.

Optilytics[®]

- Automated cabinet analysis for Simplist prefilled syringes
- For customers considering Simplist, implementation roadmap provided
- For customers with Simplist, optimizations provided
- All Optilytics Simplist reports are complimentary
- Easy to get started, with little time commitment to view results

Resources

ch

Simplist

How it works

Optilytics analyzes your ADC data and provides stepby-step instructions for selective enhancements, giving you time estimates and allowing you to optimize for Simplist quickly and easily.

1. Data collection

We request a few standard ADC inventory reports. No patient information is required, and no data will be shared.

2. Analysis

Optilytics will also look to improve the storage of Simplist already loaded in the cabinet. Par levels will be adjusted as needed to optimize space for Simplist.

3. Reporting

Optilytics provides instructions for the selective optimization of Simplist. Reporting includes the tool so overall impact, including time estimates and inventory changes.

Hospital floor drug storage units

FIRST ANALYTICS[®]

Drawers have locked modular "cubies"

FIRST ANALYTICS®

The problem

Our client

- Millions invested in product development.
- Built a new factory just for this.
- Nurses love the product.
- But it's not selling.

Hospital pharmacy operations

- Will these things even fit?
- How? Figuring this out for one med station is 50 times harder than a Rubik's cube.
- Won't we have to buy more med-stations?

ADC System - Pyxis ES						
Optilytics Summary Ca	abinet Changes Drawer Visual	Download Cabinet Changes				
Station	Search for medication	Q				

STEP ≡	ACTION ≡	MEDICATION =	DRAWER ≡	POCKET [SIZE] ≡	QTY	
1.	REMOVE	fentaNYL (fentaNYL Citrate) 100 mcg (2 mL) v	drawer 2.1	pocket C3 [HHC:1x2]	15	Preview
2.	MOVE THIS TO HERE	Sodium Chloride 0.9% (Normal Saline) (20 mL) Sodium Chloride 0.9% (Normal Saline) (20 mL)	drawer 4 drawer 2.1	pocket C1 [FHC:2x2] pocket C3 [HHC:1x2]	4 4	Preview 💼
3.	ADD THIS	Simplist [®] Fentanyl MV 50 MCG	drawer 2.2	pocket E1 [HHC:1x3]	15	Preview

Note: The suggested fill quantity of 15 is 1 less than the pocket capacity of 16

Move-by-move

Station UHLMC_ED1 0.7% increase in available space **Optilytics**[™]

Medical Center Cabinet Changes

	ACTION	MEDICATION	DRAWER	POCKET [SIZE]	QTY
1.	REMOVE	fentaNYL (fentaNYL Citrate) 100 mcg (from drawer 2	pocket D3 [HHC:1x2]	25
2	. REMOVE	fentaNYL (fentaNYL Citrate) 100 mcg (from drawer 3	pocket D5 [HHC:1x2]	25
3	. MOVE THIS	HYDROmorphone (Dilaudid) 0.5 mg (0.5	from drawer 6	pocket B3 [FHC:2x3]	10 10
	TO HERE			pocket AS [FHC.2XI]	10
4	. MOVE THIS	OXYcodone-APAP 5-325mg (Percocet) tab	from drawer 3	pocket E4 [HHC:1x3]	31
	TO HERE	OXYcodone-APAP 5-325mg (Percocet) tab	to drawer 3	pocket B5 [HHC:1x1]	15
	AND HERE	OXYcodone-APAP 5-325mg (Percocet) tab	to drawer 4	pocket B3 [HHC:1x1]	16
	Note: The suggest	ed fill quantity of 16 is 8 less than the pocket capacit	y of 24		
5	. MOVE THIS	albuterol HFA (OR & SP) (ProAir HFA)	from drawer 6	pocket D1 [FHC:2x5]	9
	TO HERE	albuterol HFA (OR & SP) (ProAir HFA)	to drawer 6	pocket B3 [FHC:2x3]	9
6	. MOVE THIS	lidocaine 1% MPF (Xylocaine) (5 mL) v	from drawer 7	pocket C1 [FHC:2x2]	10
	TO HERE	lidocaine 1% MPF (Xylocaine) (5 mL) v	to drawer 2	pocket D3 [HHC:1x2]	10
	Note: The suggest	ed fill quantity of 10 is 2 less than the pocket capacit	y of 12		
7	. MOVE THIS	diazePAM (Valium) 10 mg (2 mL) syring	from drawer 7	pocket E1 [FHC:2x5]	14
	TO HERE	diazePAM (Valium) 10 mg (2 mL) syring	to drawer 3	pocket E4 [HHC:1x3]	5
	AND HERE	diazePAM (Valium) 10 mg (2 mL) syring	to drawer 4	pocket E4 [HHC:1x3]	9
	Note: The suggest	ed fill quantity of 9 is 1 less than the pocket capacity	of 10		
8	. ADD THIS	Simplist [®] Fentanyl MV 50 MCG	to drawer 1	pocket A3 [FHC:2x1]	10
	Note: The suggest	ed fill quantity of 10 is 1 less than the pocket capacity	/ of 11		
9	. ADD THIS	Simplist [®] Fentanyl MV 50 MCG	to drawer 7	pocket C1 [FHC:2x2]	23
10	. ADD THIS	Simplist [®] Fentanyl MV 50 MCG	to drawer 7	pocket E1 [FHC:2x5]	67

FIRST ANALYTICS[®]

© Copyright 2024 First Analytics | PAGE 23

Other Examples

Some Typical ML/Optimization Use Cases

Use Case	Machine Learning Role	Optimization Details
Supply Chain Management	Predicting demand and supply chain risks	Minimizing costs and maximizing efficiency, considering constraints such as delivery times and resource availability
Manufacturing Scheduling	Predicting machine failures and maintenance needs	Scheduling of jobs to maximize throughput and minimize downtime, using constraints like machine availability and maintenance schedules
Financial Portfolio Management	Predicting future price movements and risks	Optimizing portfolio allocation to maximize returns and minimize risk, with constraints on risk tolerance and liquidity requirements
Customer Marketing	Predicting customer behavior and preferences	Maximizing campaign effectiveness by targeting optimal customer segments, with budget constraints and expected ROI
Energy Grid Management	Forecasting energy demand and production from renewable sources	Optimizing energy distribution and storage to balance supply and demand, considering factors like weather predictions and energy prices

Some Typical ML/Optimization Use Cases

Use Case	Machine Learning Role	Optimization Details
Traffic Flow Optimization	Predicting traffic patterns and congestion	Optimizing traffic signal timings to reduce congestion and improve flow, using data on traffic volumes and speeds
Agricultural Yield Optimization	Predicting crop yields based on environmental data	Optimizing planting schedules and resource allocation (like water and fertilizers) to maximize crop yields, with constraints such as climatic conditions and soil health
Healthcare Staff Scheduling	Predicting patient admissions and care requirements	Optimizing staff shifts to ensure adequate coverage and minimize overtime, considering patient needs and staff availability
Retail Inventory Management	Forecasting sales and product demand trends	Optimizing inventory levels to balance stock availability against holding costs, using sales forecasts and seasonal trends
Freight Load Optimization	Predicting optimal load configurations and delivery routes	Optimizing the distribution of cargo within vehicles and the selection of delivery routes to minimize fuel consumption and travel time, with constraints on vehicle capacity, delivery windows, and route restrictions

Some Typical ML/Optimization Use Cases

Use Case	Machine Learning Role	Optimization Details
Warehouse Layout Optimization	Analyzing patterns of item retrieval and storage	Optimizing the placement of goods in a warehouse to minimize retrieval time, with constraints on space and accessibility
Airline Crew Scheduling	Forecasting staff availability and flight demands	Optimizing crew assignments to ensure coverage for all flights while minimizing costs and adhering to labor laws
Public Transport Fleet Management	Predicting passenger loads and transit patterns	Optimizing the number and timing of vehicles on routes to balance service frequency with operational costs, considering passenger comfort and vehicle capacity
Intermodal Transportation Management	Estimating delays and efficiencies across transport modes	Optimizing the use of different transport modes (rail, ship, truck) to minimize overall transit time and costs, with constraints related to transfer points and schedules
Autonomous Vehicle Routing	Predicting traffic conditions and obstacle data	Optimizing routes for autonomous vehicles to minimize travel time and maximize safety, considering real-time traffic data, road conditions, and regulatory constraints

Software Tools

HINT: IT'S VERY FAMILIAR

Optimization in Code

You

Let's have ChatGPT 4 write it for us

A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B.

At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.

The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximise the combined sum of the units of X and the units of Y in stock at the end of the week.

Formulate the problem of deciding how much of each product to make in the current week as a linear program.

Write a program using Python and Gurobi to solve this problem.

Variables and Objective Function

ChatGPT

To solve this optimization problem using a linear program, we need to formulate our variables, objective function, and constraints based on the given information.

Variables

Let's define:

- x: the number of units of Product X to be produced this week.
- y: the number of units of Product Y to be produced this week.

Objective Function

We aim to maximize the combined sum of the units of X and Y in stock at the end of the week. Initially, there are 30 units of X and 90 units of Y in stock. The demand for X is 75 units, and for Y is 95 units. Therefore, our objective function, which we want to maximize, can be represented as: Maximize : (30 + x - 75) + (90 + y - 95)

Simplified, this becomes:

Maximize: x + y - 50

Constraints

Constraints

 Machine A Time Limitation: Each unit of X requires 50 minutes on machine A, and each unit of Y requires 24 minutes on machine A. Machine A has 40 hours available, which is 2400 minutes. Hence, the constraint is:

 $50x + 24y \le 2400$

 Machine B Time Limitation: Each unit of X requires 30 minutes on machine B, and each unit of Y requires 33 minutes on machine B. Machine B has 35 hours available, which is 2100 minutes. Thus, the constraint is:

 $30x + 33y \le 2100$

3. Production Non-Negativity: We cannot produce a negative quantity of products. Therefore:

 $x \geq 0, y \geq 0$

Python Code

FIRST ANALYTICS[®]

Experience Sharing

INTERACTIVE DISCUSSION

Your Turn (pick some questions to discuss)

- 1. Current Use of Optimization: In what areas of your current projects are you already using optimization techniques?
- **2. Identifying Opportunities:** Where do you see potential for optimization to improve efficiency or reduce costs in your existing projects?
- **3. Integration Challenges:** What are the main challenges you face in integrating optimization techniques with existing machine learning models?
- **4. Resource Management:** How might optimization help in better resource allocation your team company?
- **5. Strategic Decisions:** How could optimization techniques support strategic planning and decision-making in your organization?

- **6. Innovative Applications:** Can you think of a recent problem you encountered that could have been approached differently with optimization?
- 7. Skill Development: What skills or knowledge do you think would be necessary to better leverage optimization in your work?
- 8. Tools and Technologies: What tools or software are you currently using that involve optimization, and are there tools you wish you had access to?
- **9. Collaboration and Interdisciplinary Work**: What opportunities do you see for interdisciplinary collaboration using optimization techniques in your company?
- **10. Measuring Impact:** How might you measure the success or impact of optimization in your projects?

Thank You

Rob Stevens | rstevens@firstanaltyics.com

- PDF of the slides
- More information about Gurobi
 - Insights for data scientists
 - Case studies in Jupyter notebooks
- More information from First Analytics